Quantifying the degree of average contraction of Collatz orbits

Timoteo Carletti, Duccio Fanelli

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

7 Téléchargements (Pure)

Résumé

We here elaborate on a quantitative argument to support the validity of the Collatz conjecture, also known as the (3x+1)
or Syracuse conjecture. The analysis is structured as follows. First, three distinct fixed points are found for the third iterate of the Collatz map, which hence organise in a period 3 orbit of the original map. These are 1, 2 and 4, the elements which define the unique attracting cycle, as hypothesised by Collatz. To carry out the calculation we write the positive integers in modulo 8 (mod8), obtain a closed analytical form for the associated map and determine the transitions that yield contracting or expanding iterates in the original, infinite-dimensional, space of positive integers. Then, we consider a Markov chain which runs on the reduced space of mod8 congruence classes of integers. The transition probabilities of the Markov chain are computed from the deterministic map, by employing a measure that is invariant for the map itself. Working in this setting, we demonstrate that the stationary distribution sampled by the stochastic system induces a contracting behaviour for the orbits of the deterministic map on the original space of the positive integers. Sampling the equilibrium distribution on the congruence classes mod 8^m
for any m, which amounts to arbitrarily reducing the degree of imposed coarse graining, returns an identical conclusion.
langue originaleAnglais
Pages (de - à)445-468
Nombre de pages24
journalBollettino dell'Unione Matematica Italiana
Volume11
Numéro de publication4
Les DOIs
Etat de la publicationPublié - 3 oct. 2017

Empreinte digitale Examiner les sujets de recherche de « Quantifying the degree of average contraction of Collatz orbits ». Ensemble, ils forment une empreinte digitale unique.

  • CCS 2016

    Timoteo Carletti (Conférencier)

    22 sept. 2016

    Activité: Types de Participation ou d'organisation d'un événementParticipation à une conférence, un congrès

Contient cette citation