Résumé
The phase portrait of the second-order differential equation $$ \ddot{x} + \sum_{l=0}^n f_l(x)\dot{x}^l=0, $$ is studied. Some results concerning existence, non-existence and uniqueness of limit cycles are presented. In particular, a generalization of the classical Massera uniqueness result is proved.
langue originale | Anglais |
---|---|
Lieu de publication | Namur |
Editeur | FUNDP, Faculté des Sciences. Département de Mathématique. |
Etat de la publication | Publié - 2007 |