Résumé
Markov games is a framework which can be used to formalise n-agent reinforcement learning (RL). Littman (Markov games as a framework for multi-agent reinforcement learning, in: Proceedings of the 11th International Conference on Machine Learning (ICML-94), 1994.) uses this framework to model two-agent zero-sum problems and, within this context, proposes the minimax-Q algorithm. This paper reviews RL algorithms for two-player zero-sum Markov games and introduces a new, simple, fast. algorithm, called 2L(2).2L(2) is compared to several standard algorithms (Q-learning, Minimax and minimax-Q) implemented with the)ash library written in Python. The experiments show that 222 converges empirically to optimal mixed policies, as minimax-Q, but uses a surprisingly simple and cheap updating rule. (C) 2009 Elsevier B.V. All rights reserved.
langue originale | Anglais |
---|---|
titre | Proceedings of the 16th European Symposium on Artificial Neural Networks |
Pages | 137-142 |
Nombre de pages | 6 |
Etat de la publication | Publié - 2009 |
Modification externe | Oui |
Evénement | 16th European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning, ESANN 2008 - Bruges, Belgique Durée: 23 avr. 2008 → 25 avr. 2008 |
Une conférence
Une conférence | 16th European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning, ESANN 2008 |
---|---|
Pays/Territoire | Belgique |
La ville | Bruges |
période | 23/04/08 → 25/04/08 |