Pure hydrogen references synthesized by low energy ion implantation into amorphous silicon

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

We developed a hydrogen standard by ion implantation in amorphous silicon, produced by implantation of 170 keV 28Si with 2·1015 at./cm2 in a silicon wafer (1 0 0) to obtain an amorphous depth of a few hundred of nanometers. The tilt and twist angles of the target were fixed to avoid channeling and the sample was cooled during the implantation. The amorphous silicon was then irradiated successively with hydrogen at 3.0 and 1.5 keV with doses 1.0 and 0.7·1017 at./cm2 respectively. The characteristics of the standards (retained dose, depth profile and stability under irradiation) were investigated by elastic recoil detection analysis (ERDA) and resonant nuclear reaction analysis (RNRA) with a 1H(15N,αγ)12C reaction at 6.385 MeV. These properties were compared with another previously developed standard (hydrogen implantation in monocrystalline silicon (1 0 0)). Results showed that, for the same implanted dose, the retained dose is about 55% larger in amorphous silicon. Furthermore, we showed these new standards are stable under beam irradiation for low current (10 nA/mm2) and could be used as IBA reference. Stability for higher currents (100 nA/mm2) showed a 10% release after an integrated charge about 2 mC. We showed that this release which occurs at the beginning of irradiation is due to desorption of the H-contamination layer on the surface. Implanted hydrogen remains stable under irradiation. We conclude that those standards are suitable target to study nuclear reactions of astrophysical interest, namely the 1H(13C,γ)14N reaction.

langue originaleAnglais
Pages (de - à)47-52
Nombre de pages6
journalNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
Volume442
Les DOIs
étatPublié - 1 mars 2019

Empreinte digitale

Amorphous silicon
Ion implantation
amorphous silicon
ion implantation
Hydrogen
Irradiation
hydrogen
Nuclear reactions
implantation
dosage
irradiation
nuclear reactions
energy
Monocrystalline silicon
Silicon wafers
Dosimetry
silicon
low currents
Desorption
Contamination

Citer ceci

@article{d967c1773a0d4c67803a705b72bea6b8,
title = "Pure hydrogen references synthesized by low energy ion implantation into amorphous silicon",
abstract = "We developed a hydrogen standard by ion implantation in amorphous silicon, produced by implantation of 170 keV 28Si with 2·1015 at./cm2 in a silicon wafer (1 0 0) to obtain an amorphous depth of a few hundred of nanometers. The tilt and twist angles of the target were fixed to avoid channeling and the sample was cooled during the implantation. The amorphous silicon was then irradiated successively with hydrogen at 3.0 and 1.5 keV with doses 1.0 and 0.7·1017 at./cm2 respectively. The characteristics of the standards (retained dose, depth profile and stability under irradiation) were investigated by elastic recoil detection analysis (ERDA) and resonant nuclear reaction analysis (RNRA) with a 1H(15N,αγ)12C reaction at 6.385 MeV. These properties were compared with another previously developed standard (hydrogen implantation in monocrystalline silicon (1 0 0)). Results showed that, for the same implanted dose, the retained dose is about 55{\%} larger in amorphous silicon. Furthermore, we showed these new standards are stable under beam irradiation for low current (10 nA/mm2) and could be used as IBA reference. Stability for higher currents (100 nA/mm2) showed a 10{\%} release after an integrated charge about 2 mC. We showed that this release which occurs at the beginning of irradiation is due to desorption of the H-contamination layer on the surface. Implanted hydrogen remains stable under irradiation. We conclude that those standards are suitable target to study nuclear reactions of astrophysical interest, namely the 1H(13C,γ)14N reaction.",
keywords = "Amorphous silicon, Hydrogen standard, Ion implantation",
author = "Debarsy, {P. L.} and G. Terwagne",
year = "2019",
month = "3",
day = "1",
doi = "10.1016/j.nimb.2018.12.047",
language = "English",
volume = "442",
pages = "47--52",
journal = "Nuclear Instruments and Methods in Physical Research B",
issn = "0168-583X",
publisher = "Elsevier",

}

TY - JOUR

T1 - Pure hydrogen references synthesized by low energy ion implantation into amorphous silicon

AU - Debarsy, P. L.

AU - Terwagne, G.

PY - 2019/3/1

Y1 - 2019/3/1

N2 - We developed a hydrogen standard by ion implantation in amorphous silicon, produced by implantation of 170 keV 28Si with 2·1015 at./cm2 in a silicon wafer (1 0 0) to obtain an amorphous depth of a few hundred of nanometers. The tilt and twist angles of the target were fixed to avoid channeling and the sample was cooled during the implantation. The amorphous silicon was then irradiated successively with hydrogen at 3.0 and 1.5 keV with doses 1.0 and 0.7·1017 at./cm2 respectively. The characteristics of the standards (retained dose, depth profile and stability under irradiation) were investigated by elastic recoil detection analysis (ERDA) and resonant nuclear reaction analysis (RNRA) with a 1H(15N,αγ)12C reaction at 6.385 MeV. These properties were compared with another previously developed standard (hydrogen implantation in monocrystalline silicon (1 0 0)). Results showed that, for the same implanted dose, the retained dose is about 55% larger in amorphous silicon. Furthermore, we showed these new standards are stable under beam irradiation for low current (10 nA/mm2) and could be used as IBA reference. Stability for higher currents (100 nA/mm2) showed a 10% release after an integrated charge about 2 mC. We showed that this release which occurs at the beginning of irradiation is due to desorption of the H-contamination layer on the surface. Implanted hydrogen remains stable under irradiation. We conclude that those standards are suitable target to study nuclear reactions of astrophysical interest, namely the 1H(13C,γ)14N reaction.

AB - We developed a hydrogen standard by ion implantation in amorphous silicon, produced by implantation of 170 keV 28Si with 2·1015 at./cm2 in a silicon wafer (1 0 0) to obtain an amorphous depth of a few hundred of nanometers. The tilt and twist angles of the target were fixed to avoid channeling and the sample was cooled during the implantation. The amorphous silicon was then irradiated successively with hydrogen at 3.0 and 1.5 keV with doses 1.0 and 0.7·1017 at./cm2 respectively. The characteristics of the standards (retained dose, depth profile and stability under irradiation) were investigated by elastic recoil detection analysis (ERDA) and resonant nuclear reaction analysis (RNRA) with a 1H(15N,αγ)12C reaction at 6.385 MeV. These properties were compared with another previously developed standard (hydrogen implantation in monocrystalline silicon (1 0 0)). Results showed that, for the same implanted dose, the retained dose is about 55% larger in amorphous silicon. Furthermore, we showed these new standards are stable under beam irradiation for low current (10 nA/mm2) and could be used as IBA reference. Stability for higher currents (100 nA/mm2) showed a 10% release after an integrated charge about 2 mC. We showed that this release which occurs at the beginning of irradiation is due to desorption of the H-contamination layer on the surface. Implanted hydrogen remains stable under irradiation. We conclude that those standards are suitable target to study nuclear reactions of astrophysical interest, namely the 1H(13C,γ)14N reaction.

KW - Amorphous silicon

KW - Hydrogen standard

KW - Ion implantation

UR - http://www.scopus.com/inward/record.url?scp=85060105703&partnerID=8YFLogxK

U2 - 10.1016/j.nimb.2018.12.047

DO - 10.1016/j.nimb.2018.12.047

M3 - Article

VL - 442

SP - 47

EP - 52

JO - Nuclear Instruments and Methods in Physical Research B

JF - Nuclear Instruments and Methods in Physical Research B

SN - 0168-583X

ER -