Predicting links in ego-networks using temporal information

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

27 Téléchargements (Pure)

Résumé

Link prediction appears as a central problem of network science, as it calls for unfolding the mechanisms that govern the micro-dynamics of the network. In this work, we are interested in ego-networks, that is the mere information of interactions of a node to its neighbors, in the context of social relationships. As the structural information is very poor, we rely on another source of information to predict links among egos’ neighbors: the timing of interactions. We define several features to capture different kinds of temporal information and apply machine learning methods to combine these various features and improve the quality of the prediction. We demonstrate the efficiency of this temporal approach on a cellphone interaction dataset, pointing out features which prove themselves to perform well in this context, in particular the temporal profile of interactions and elapsed time between contacts.

langue originaleAnglais
Numéro d'article1
Nombre de pages16
journalEPJ Data Science
Volume5
Numéro de publication1
Les DOIs
Etat de la publicationPublié - 2016

Empreinte digitale

Examiner les sujets de recherche de « Predicting links in ego-networks using temporal information ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation