Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells

Christos Trompoukis, Islam Abdo, Romain Cariou, Ismael Cosme, Wanghua Chen, Olivier Deparis, Alexandre Dmitriev, Emmanuel Drouard, Martin Foldyna, Enric Garcia-Caurel, Ivan Gordon, Babak Heidari, Aline Herman, Loic Lalouat, Ki Dong Lee, Jia Liu, Kristof Lodewijks, Fabien Mandorlo, Inès Massiot, Alexandre Mayer & 11 Autres Vladimir Mijkovic, Jerome Muller, Regis Orobtchouk, Gilles Poulain, Patricia Prod'Homme, Pere Roca I Cabarrocas, Christian Seassal, Jef Poortmans, Robert Mertens, Ounsi El Daif, Valérie Depauw

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern. (Figure Presented)

langueAnglais
Pages140-155
Nombre de pages16
journalPhysica Status Solidi (A) Applications and Materials Science
Volume212
Numéro1
Les DOIs
étatPublié - 2015

Empreinte digitale

Silicon solar cells
Photonics
Nanostructures
Dry etching
solar cells
trapping
etching
photonics
Crystalline materials
Nanoimprint lithography
Carrier lifetime
Plasma etching
Wet etching
Texturing
Open circuit voltage
Short circuit currents
simulation
Aspect ratio
Masks
short circuit currents

mots-clés

    Citer ceci

    Trompoukis, C., Abdo, I., Cariou, R., Cosme, I., Chen, W., Deparis, O., ... Depauw, V. (2015). Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells. DOI: 10.1002/pssa.201431180
    Trompoukis, Christos ; Abdo, Islam ; Cariou, Romain ; Cosme, Ismael ; Chen, Wanghua ; Deparis, Olivier ; Dmitriev, Alexandre ; Drouard, Emmanuel ; Foldyna, Martin ; Garcia-Caurel, Enric ; Gordon, Ivan ; Heidari, Babak ; Herman, Aline ; Lalouat, Loic ; Lee, Ki Dong ; Liu, Jia ; Lodewijks, Kristof ; Mandorlo, Fabien ; Massiot, Inès ; Mayer, Alexandre ; Mijkovic, Vladimir ; Muller, Jerome ; Orobtchouk, Regis ; Poulain, Gilles ; Prod'Homme, Patricia ; Roca I Cabarrocas, Pere ; Seassal, Christian ; Poortmans, Jef ; Mertens, Robert ; El Daif, Ounsi ; Depauw, Valérie. / Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells. Dans: Physica Status Solidi (A) Applications and Materials Science. 2015 ; Vol 212, Numéro 1. p. 140-155
    @article{77e221a45ae9407ea133d7f28d464233,
    title = "Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells",
    abstract = "We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern. (Figure Presented)",
    keywords = "Light trapping, Photonic crystals, Photonic nanostructures, Silicon, Solar cells, Thin films",
    author = "Christos Trompoukis and Islam Abdo and Romain Cariou and Ismael Cosme and Wanghua Chen and Olivier Deparis and Alexandre Dmitriev and Emmanuel Drouard and Martin Foldyna and Enric Garcia-Caurel and Ivan Gordon and Babak Heidari and Aline Herman and Loic Lalouat and Lee, {Ki Dong} and Jia Liu and Kristof Lodewijks and Fabien Mandorlo and In{\`e}s Massiot and Alexandre Mayer and Vladimir Mijkovic and Jerome Muller and Regis Orobtchouk and Gilles Poulain and Patricia Prod'Homme and {Roca I Cabarrocas}, Pere and Christian Seassal and Jef Poortmans and Robert Mertens and {El Daif}, Ounsi and Val{\'e}rie Depauw",
    year = "2015",
    doi = "10.1002/pssa.201431180",
    language = "English",
    volume = "212",
    pages = "140--155",
    journal = "Physica Status Solidi (A) Applications and Materials Science",
    issn = "1862-6300",
    publisher = "Wiley-VCH Verlag",
    number = "1",

    }

    Trompoukis, C, Abdo, I, Cariou, R, Cosme, I, Chen, W, Deparis, O, Dmitriev, A, Drouard, E, Foldyna, M, Garcia-Caurel, E, Gordon, I, Heidari, B, Herman, A, Lalouat, L, Lee, KD, Liu, J, Lodewijks, K, Mandorlo, F, Massiot, I, Mayer, A, Mijkovic, V, Muller, J, Orobtchouk, R, Poulain, G, Prod'Homme, P, Roca I Cabarrocas, P, Seassal, C, Poortmans, J, Mertens, R, El Daif, O & Depauw, V 2015, 'Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells' Physica Status Solidi (A) Applications and Materials Science, VOL. 212, Numéro 1, p. 140-155. DOI: 10.1002/pssa.201431180

    Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells. / Trompoukis, Christos; Abdo, Islam; Cariou, Romain; Cosme, Ismael; Chen, Wanghua; Deparis, Olivier; Dmitriev, Alexandre; Drouard, Emmanuel; Foldyna, Martin; Garcia-Caurel, Enric; Gordon, Ivan; Heidari, Babak; Herman, Aline; Lalouat, Loic; Lee, Ki Dong; Liu, Jia; Lodewijks, Kristof; Mandorlo, Fabien; Massiot, Inès; Mayer, Alexandre; Mijkovic, Vladimir; Muller, Jerome; Orobtchouk, Regis; Poulain, Gilles; Prod'Homme, Patricia; Roca I Cabarrocas, Pere; Seassal, Christian; Poortmans, Jef; Mertens, Robert; El Daif, Ounsi; Depauw, Valérie.

    Dans: Physica Status Solidi (A) Applications and Materials Science, Vol 212, Numéro 1, 2015, p. 140-155.

    Résultats de recherche: Contribution à un journal/une revueArticle

    TY - JOUR

    T1 - Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells

    AU - Trompoukis,Christos

    AU - Abdo,Islam

    AU - Cariou,Romain

    AU - Cosme,Ismael

    AU - Chen,Wanghua

    AU - Deparis,Olivier

    AU - Dmitriev,Alexandre

    AU - Drouard,Emmanuel

    AU - Foldyna,Martin

    AU - Garcia-Caurel,Enric

    AU - Gordon,Ivan

    AU - Heidari,Babak

    AU - Herman,Aline

    AU - Lalouat,Loic

    AU - Lee,Ki Dong

    AU - Liu,Jia

    AU - Lodewijks,Kristof

    AU - Mandorlo,Fabien

    AU - Massiot,Inès

    AU - Mayer,Alexandre

    AU - Mijkovic,Vladimir

    AU - Muller,Jerome

    AU - Orobtchouk,Regis

    AU - Poulain,Gilles

    AU - Prod'Homme,Patricia

    AU - Roca I Cabarrocas,Pere

    AU - Seassal,Christian

    AU - Poortmans,Jef

    AU - Mertens,Robert

    AU - El Daif,Ounsi

    AU - Depauw,Valérie

    PY - 2015

    Y1 - 2015

    N2 - We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern. (Figure Presented)

    AB - We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern. (Figure Presented)

    KW - Light trapping

    KW - Photonic crystals

    KW - Photonic nanostructures

    KW - Silicon

    KW - Solar cells

    KW - Thin films

    U2 - 10.1002/pssa.201431180

    DO - 10.1002/pssa.201431180

    M3 - Article

    VL - 212

    SP - 140

    EP - 155

    JO - Physica Status Solidi (A) Applications and Materials Science

    T2 - Physica Status Solidi (A) Applications and Materials Science

    JF - Physica Status Solidi (A) Applications and Materials Science

    SN - 1862-6300

    IS - 1

    ER -