Pareto depth for functional data

Sami Helander, Germain Van Bever, Sakke Rantala, Pauliina Ilmonen

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    6 Téléchargements (Pure)

    Résumé

    This paper introduces a new concept of depth for functional data. It is based on a new multivariate Pareto depth applied after mapping the functional observations to a vector of statistics of interest. These quantities allow to incorporate the inherent features of the distribution, such as shape or roughness. In particular, in contrast to most existing functional depths, the method is not limited to centrality only. Properties of the depths are explored and the benefits of a flexible choice of features are illustrated on several examples. In particular, its excellent classification capacity is demonstrated on a real data example.

    langue originaleAnglais
    Pages (de - à)182-204
    Nombre de pages23
    journalStatistics
    Volume54
    Numéro de publication1
    Les DOIs
    Etat de la publicationPublié - 2 janv. 2020

    Empreinte digitale

    Examiner les sujets de recherche de « Pareto depth for functional data ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation