Optimization of photonics for corrugated thin-film solar cells

O. Deparis, J.P. Vigneron, O. Agustsson, D. Decroupet

Résultats de recherche: Contribution à un journal/une revueLettre

Résumé

The amount of solar energy reaching the active (photovoltaic) layer in a thin-film solar cell can be increased by reducing the Fresnel reflection losses at the interfaces. By using corrugated interfaces (at the wavelength scale), adiabatic propagation of the electromagnetic radiation is achieved over a broad wavelength range throughout the structure, which leads to an increase in the light that is absorbed in the active layer and, ultimately, to the improvement of the photovoltaic conversion efficiency. In this article, we have considered the case of corrugated thin-film solar cell structures and we have studied theoretically the optimization of such structures from the point of view of photonics. The focus was put on periodic pyramidal interface corrugations because they were similar to those existing at the surface of corrugated transparent electrodes on which active layers can be deposited. Because of their technological importance, we chose to work with fluorine-doped tin oxide as front electrode material and with amorphous silicon as active material. Using an original three dimensional transfer matrix method, we solved the electromagnetic wave propagation problem in the general case of laterally periodic stratified media and we compared this solution with effective medium approximated solution. On the basis of typical pyramid sizes, we demonstrated, through numerical simulations, the optimization of the global light energy intake by means of corrugations of increasing complexity. The best structures were found to be based on pyramid arrays having subwavelength periods and aspect ratio values close to one. Typically, a pyramidal structure with base and height both equal to 300 nm led to a global energy intake equal to I=0.98 (integrated over the spectral range 400-710 nm), which represented a 24% improvement in comparison with the global energy intake of a planar structure (I=0.79).
langue originaleAnglais
journalJournal of Applied Physics
Volume106
Numéro de publication9
Les DOIs
étatPublié - 1 janv. 2009

Empreinte digitale

solar cells
photonics
pyramids
optimization
electromagnetic radiation
thin films
photovoltaic conversion
planar structures
solar energy
electrode materials
wavelengths
matrix methods
tin oxides
amorphous silicon
fluorine
energy
aspect ratio
wave propagation
electrodes
propagation

Citer ceci

@article{804340c7c45a42729eb6452c253548af,
title = "Optimization of photonics for corrugated thin-film solar cells",
abstract = "The amount of solar energy reaching the active (photovoltaic) layer in a thin-film solar cell can be increased by reducing the Fresnel reflection losses at the interfaces. By using corrugated interfaces (at the wavelength scale), adiabatic propagation of the electromagnetic radiation is achieved over a broad wavelength range throughout the structure, which leads to an increase in the light that is absorbed in the active layer and, ultimately, to the improvement of the photovoltaic conversion efficiency. In this article, we have considered the case of corrugated thin-film solar cell structures and we have studied theoretically the optimization of such structures from the point of view of photonics. The focus was put on periodic pyramidal interface corrugations because they were similar to those existing at the surface of corrugated transparent electrodes on which active layers can be deposited. Because of their technological importance, we chose to work with fluorine-doped tin oxide as front electrode material and with amorphous silicon as active material. Using an original three dimensional transfer matrix method, we solved the electromagnetic wave propagation problem in the general case of laterally periodic stratified media and we compared this solution with effective medium approximated solution. On the basis of typical pyramid sizes, we demonstrated, through numerical simulations, the optimization of the global light energy intake by means of corrugations of increasing complexity. The best structures were found to be based on pyramid arrays having subwavelength periods and aspect ratio values close to one. Typically, a pyramidal structure with base and height both equal to 300 nm led to a global energy intake equal to I=0.98 (integrated over the spectral range 400-710 nm), which represented a 24{\%} improvement in comparison with the global energy intake of a planar structure (I=0.79).",
author = "O. Deparis and J.P. Vigneron and O. Agustsson and D. Decroupet",
year = "2009",
month = "1",
day = "1",
doi = "10.1063/1.3253755",
language = "English",
volume = "106",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "9",

}

Optimization of photonics for corrugated thin-film solar cells. / Deparis, O.; Vigneron, J.P.; Agustsson, O.; Decroupet, D.

Dans: Journal of Applied Physics, Vol 106, Numéro 9, 01.01.2009.

Résultats de recherche: Contribution à un journal/une revueLettre

TY - JOUR

T1 - Optimization of photonics for corrugated thin-film solar cells

AU - Deparis, O.

AU - Vigneron, J.P.

AU - Agustsson, O.

AU - Decroupet, D.

PY - 2009/1/1

Y1 - 2009/1/1

N2 - The amount of solar energy reaching the active (photovoltaic) layer in a thin-film solar cell can be increased by reducing the Fresnel reflection losses at the interfaces. By using corrugated interfaces (at the wavelength scale), adiabatic propagation of the electromagnetic radiation is achieved over a broad wavelength range throughout the structure, which leads to an increase in the light that is absorbed in the active layer and, ultimately, to the improvement of the photovoltaic conversion efficiency. In this article, we have considered the case of corrugated thin-film solar cell structures and we have studied theoretically the optimization of such structures from the point of view of photonics. The focus was put on periodic pyramidal interface corrugations because they were similar to those existing at the surface of corrugated transparent electrodes on which active layers can be deposited. Because of their technological importance, we chose to work with fluorine-doped tin oxide as front electrode material and with amorphous silicon as active material. Using an original three dimensional transfer matrix method, we solved the electromagnetic wave propagation problem in the general case of laterally periodic stratified media and we compared this solution with effective medium approximated solution. On the basis of typical pyramid sizes, we demonstrated, through numerical simulations, the optimization of the global light energy intake by means of corrugations of increasing complexity. The best structures were found to be based on pyramid arrays having subwavelength periods and aspect ratio values close to one. Typically, a pyramidal structure with base and height both equal to 300 nm led to a global energy intake equal to I=0.98 (integrated over the spectral range 400-710 nm), which represented a 24% improvement in comparison with the global energy intake of a planar structure (I=0.79).

AB - The amount of solar energy reaching the active (photovoltaic) layer in a thin-film solar cell can be increased by reducing the Fresnel reflection losses at the interfaces. By using corrugated interfaces (at the wavelength scale), adiabatic propagation of the electromagnetic radiation is achieved over a broad wavelength range throughout the structure, which leads to an increase in the light that is absorbed in the active layer and, ultimately, to the improvement of the photovoltaic conversion efficiency. In this article, we have considered the case of corrugated thin-film solar cell structures and we have studied theoretically the optimization of such structures from the point of view of photonics. The focus was put on periodic pyramidal interface corrugations because they were similar to those existing at the surface of corrugated transparent electrodes on which active layers can be deposited. Because of their technological importance, we chose to work with fluorine-doped tin oxide as front electrode material and with amorphous silicon as active material. Using an original three dimensional transfer matrix method, we solved the electromagnetic wave propagation problem in the general case of laterally periodic stratified media and we compared this solution with effective medium approximated solution. On the basis of typical pyramid sizes, we demonstrated, through numerical simulations, the optimization of the global light energy intake by means of corrugations of increasing complexity. The best structures were found to be based on pyramid arrays having subwavelength periods and aspect ratio values close to one. Typically, a pyramidal structure with base and height both equal to 300 nm led to a global energy intake equal to I=0.98 (integrated over the spectral range 400-710 nm), which represented a 24% improvement in comparison with the global energy intake of a planar structure (I=0.79).

UR - http://www.scopus.com/inward/record.url?scp=70450273080&partnerID=8YFLogxK

U2 - 10.1063/1.3253755

DO - 10.1063/1.3253755

M3 - Letter

AN - SCOPUS:70450273080

VL - 106

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 9

ER -