On the uniform nonsingularity of matrices of search directions and the rate of convergence in minimization algorithms

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    Résumé

    A convergent minimization algorithm made up of repetitive line searches is considered in ℝ. It is shown that the uniform nonsingularity of the matrices consisting of n successive normalized search directions guarantees a speed of convergence which is at least n-step Q-linear. Consequences are given for multistep methods, including Powell's 1964 procedure for function minimization without calculating derivatives as well as Zangwill's modifications of this procedure. © 1977 Plenum Publishing Corporation.
    langue originaleAnglais
    Pages (de - à)511-529
    Nombre de pages19
    journalJournal of Optimization Theory and Applications.
    Volume23
    Numéro de publication4
    Les DOIs
    Etat de la publicationPublié - 1 déc. 1977

    Empreinte digitale

    Examiner les sujets de recherche de « On the uniform nonsingularity of matrices of search directions and the rate of convergence in minimization algorithms ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation