On local exponential stability of equilibrium profiles of nonlinear distributed parameter systems

A. HASTIR, J. J. Winkin, D. Dochain

    Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

    14 Téléchargements (Pure)

    Résumé

    Local exponential (exp.) stability of nonlinear distributed parameter, i.e. infinite- dimensional state space, systems is considered. A weakened concept of Frechet differentiability ((y,X)-Frechet differentiability) for nonlinear operators defined on Banach spaces is proposed, including the introduction of an alternative space (Y) in the analysis. This allows more freedom in the manipulation of norm-inequalities leading to adapted Frechet differentiability conditions that are easier to check. Then, provided that the nonlinear semigroup generated by the nonlinear dynamics is Frechet-different iable in the new sense, appropriate local exp. stability of the equilibria for the nonlinear system is established. In particular, the nonlinear semigroup has to be Frechet differentiate on Y and (Y, X)-Frechet differentiate in order to go back to the original state space X. This approach may be called "perturbation-based"since exp. stability is also deduced from exp. stability of a linearized version of the nonlinear semigroup. Under adapted Frechet differentiability assumptions, the main result establishes that local exp. stability of an equilibrium for the nonlinear system is guaranteed as long as the exp. stability holds for the linearized semigroup. The same conclusion holds regarding instability. The theoretical results are illustrated on a convection-diffusion-reaction system.

    langue originaleAnglais
    titreProceedings of MTNS 2020
    Pages390-396
    Nombre de pages7
    Volume54
    Edition9
    Les DOIs
    Etat de la publicationPublié - 1 juin 2021
    Evénement24th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2020 - Cambridge, Royaume-Uni
    Durée: 23 août 202127 août 2021

    Série de publications

    NomIFAC-PapersOnLine
    EditeurIFAC Secretariat
    ISSN (imprimé)2405-8963

    Une conférence

    Une conférence24th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2020
    Pays/TerritoireRoyaume-Uni
    La villeCambridge
    période23/08/2127/08/21

    Empreinte digitale

    Examiner les sujets de recherche de « On local exponential stability of equilibrium profiles of nonlinear distributed parameter systems ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation