On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space

Phan Tu Vuong, Jean Jacques Strodiot, Van Hien Nguyen

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

In this paper, new numerical algorithms are introduced for finding the solution of a variational inequality problem whose constraint set is the common elements of the set of fixed points of a demicontractive mapping and the set of solutions of an equilibrium problem for a monotone mapping in a real Hilbert space. The strong convergence of the iterates generated by these algorithms is obtained by combining a viscosity approximation method with an extragradient method. First, this is done when the basic iteration comes directly from the extragradient method, under a Lipschitz-type condition on the equilibrium function. Then, it is shown that this rather strong condition can be omitted when an Armijo-backtracking linesearch is incorporated into the extragradient iteration. The particular case of variational inequality problems is also examined.

langue originaleAnglais
Pages (de - à)429-451
Nombre de pages23
journalOptimization
Volume64
Numéro de publication2
Les DOIs
Etat de la publicationPublié - 1 janv. 2015

Empreinte digitale Examiner les sujets de recherche de « On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation