Numerical experience with a recursive trust-region method for multilevel nonlinear bound-constrained optimization

Serge Gratton, Mélodie Mouffe, Annick Sartenaer, Philippe Toint, Dimitri Tomanos

Résultats de recherche: Contribution à un journal/une revueArticle

101 Téléchargements (Pure)

Résumé

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton et al. (A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization, IMA J. Numer. Anal. 28(4) (2008), pp. 827-861) for bound-constrained nonlinear problems, and provide numerical experience on multilevel test problems. A suitable choice of the algorithm's parameters is identified on these problems, yielding a satisfactory compromise between reliability and efficiency. The resulting default algorithm is then compared with alternative optimization techniques such as mesh refinement and direct solution of the fine-level problem. It is also shown that its behaviour is similar to that of multigrid algorithms for linear systems.
langue originaleAnglais
Pages (de - à)359-386
Nombre de pages28
journalOptimization Methods and Software
Volume25
Numéro de publication3
Les DOIs
Etat de la publicationPublié - 1 juin 2010

Empreinte digitale Examiner les sujets de recherche de « Numerical experience with a recursive trust-region method for multilevel nonlinear bound-constrained optimization ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation