Noncommutative geometry of Zitterbewegung

Michał Eckstein, Nicolas Franco, Tomasz Miller

Résultats de recherche: Contribution à un journal/une revueArticle

22 Downloads (Pure)

Résumé

Drawing from the advanced mathematics of noncommutative geometry, we model a "classical" Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung - the "trembling motion" of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's "internal space." Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.

langue originaleAnglais
Numéro d'article061701
journalPhysical Review D
Volume95
Numéro de publication6
Les DOIs
étatPublié - 23 mars 2017

Empreinte digitale

Noncommutative Geometry
Fermions
fermions
geometry
Tabletop
mathematics
Electromagnetic Fields
External Field
Paul Adrien Maurice Dirac
electromagnetic fields
High Speed
Space-time
high speed
Model
analogs
Analogue
Internal
Motion
Prediction
predictions

Citer ceci

Eckstein, Michał ; Franco, Nicolas ; Miller, Tomasz. / Noncommutative geometry of Zitterbewegung. Dans: Physical Review D. 2017 ; Vol 95, Numéro 6.
@article{862578bfdcc64173b19fae8ec065871a,
title = "Noncommutative geometry of Zitterbewegung",
abstract = "Drawing from the advanced mathematics of noncommutative geometry, we model a {"}classical{"} Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung - the {"}trembling motion{"} of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's {"}internal space.{"} Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.",
keywords = "noncommutative geometry, Zitterbewegung",
author = "Michał Eckstein and Nicolas Franco and Tomasz Miller",
year = "2017",
month = "3",
day = "23",
doi = "10.1103/PhysRevD.95.061701",
language = "English",
volume = "95",
journal = "Physical Review D - Particles, Fields, Gravitation and Cosmology",
issn = "1550-7998",
publisher = "American Physical Society",
number = "6",

}

Noncommutative geometry of Zitterbewegung. / Eckstein, Michał; Franco, Nicolas; Miller, Tomasz.

Dans: Physical Review D, Vol 95, Numéro 6, 061701, 23.03.2017.

Résultats de recherche: Contribution à un journal/une revueArticle

TY - JOUR

T1 - Noncommutative geometry of Zitterbewegung

AU - Eckstein, Michał

AU - Franco, Nicolas

AU - Miller, Tomasz

PY - 2017/3/23

Y1 - 2017/3/23

N2 - Drawing from the advanced mathematics of noncommutative geometry, we model a "classical" Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung - the "trembling motion" of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's "internal space." Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.

AB - Drawing from the advanced mathematics of noncommutative geometry, we model a "classical" Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung - the "trembling motion" of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's "internal space." Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.

KW - noncommutative geometry

KW - Zitterbewegung

UR - http://www.scopus.com/inward/record.url?scp=85022344444&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.95.061701

DO - 10.1103/PhysRevD.95.061701

M3 - Article

VL - 95

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 6

M1 - 061701

ER -