TY - JOUR
T1 - Modification of the 1-phosphate group during biosynthesis of Capnocytophaga canimorsus lipid A
AU - Renzi, Francesco
AU - Zaehringer, Ulrich
AU - Chandler, C.E.
AU - Ernst, R. K.
AU - Cornelis, Guy
AU - Ittig, Simon
PY - 2015/12/7
Y1 - 2015/12/7
N2 - Capnocytophaga canimorsus, a commensal bacterium of dog's mouth flora causing severe infections in humans after dog bites or scratches, has a lipopolysaccharide (LPS, endotoxin) with low-inflammatory lipid A. In particular it contains a phosphoethanolamine (P-Etn) instead of a free phosphate group at the C-1 position of the lipid A backbone, usually present in highly toxic enterobacterial Gram-negative lipid A. Here we show that the C. canimorsus genome comprises a single operon encoding a lipid A 1-phosphatase (LpxE) and a lipid A 1 P-Etn transferase (EptA). This suggests that lipid A is modified during biosynthesis after completing acylation of the backbone by removal of the 1-phosphate and subsequent addition of a P-Etn group. As endotoxicity of lipid A is known to depend largely on the degree of unsubstituted or unmodified phosphate residues, deletion of lpxE or eptA led to mutants lacking the P-Etn group, with consequently increased endotoxicity and decreased resistance to cationic antimicrobial peptides (CAMP). Consistent with the proposed sequential biosynthetic mechanism, the endotoxicity and CAMP resistance of a double deletion mutant of lpxE-eptA was similar to that of a single lpxE mutant. Finally, the proposed enzymatic activities of LpxE and EptA based on sequence similarity could be successfully validated by MS-based analysis of lipid A isolated from corresponding deletion mutant strains.
AB - Capnocytophaga canimorsus, a commensal bacterium of dog's mouth flora causing severe infections in humans after dog bites or scratches, has a lipopolysaccharide (LPS, endotoxin) with low-inflammatory lipid A. In particular it contains a phosphoethanolamine (P-Etn) instead of a free phosphate group at the C-1 position of the lipid A backbone, usually present in highly toxic enterobacterial Gram-negative lipid A. Here we show that the C. canimorsus genome comprises a single operon encoding a lipid A 1-phosphatase (LpxE) and a lipid A 1 P-Etn transferase (EptA). This suggests that lipid A is modified during biosynthesis after completing acylation of the backbone by removal of the 1-phosphate and subsequent addition of a P-Etn group. As endotoxicity of lipid A is known to depend largely on the degree of unsubstituted or unmodified phosphate residues, deletion of lpxE or eptA led to mutants lacking the P-Etn group, with consequently increased endotoxicity and decreased resistance to cationic antimicrobial peptides (CAMP). Consistent with the proposed sequential biosynthetic mechanism, the endotoxicity and CAMP resistance of a double deletion mutant of lpxE-eptA was similar to that of a single lpxE mutant. Finally, the proposed enzymatic activities of LpxE and EptA based on sequence similarity could be successfully validated by MS-based analysis of lipid A isolated from corresponding deletion mutant strains.
UR - http://www.ncbi.nlm.nih.gov/pubmed/26644381
UR - http://iai.asm.org/content/early/2015/12/03/IAI.01006-15.abstract?sid=adccaa48-36b5-4ab9-a4db-4ec1200abbce
U2 - 10.1128/IAI.01006-15
DO - 10.1128/IAI.01006-15
M3 - Article
SN - 0019-9567
VL - 84
SP - 550
EP - 561
JO - Infection and Immunity
JF - Infection and Immunity
IS - 2
M1 - doi: 10.1128/IAI.01006-15
ER -