Modeling the electrical properties of three-dimensional printed meshes with the theory of resistor lattices

Alexander Melnikov, Mikhail Shuba, Philippe Lambin

    Résultats de recherche: Contribution à un journal/une revueArticle

    35 Téléchargements (Pure)

    Résumé

    The electrical properties of conducting meshes are investigated numerically by solving the related Kirchhoff equations with Lanczos algorithm. The method is directly inspired by the recursion technique widely used to study the electronic and vibrational spectra of solids. The method is demonstrated to be very efficient and fast when applied to resistor networks. It is used to calculate equivalent resistances between arbitrary pairs of nodes in simple resistive lattices. When the resistance fluctuates statistically from bond to bond, the method makes it possible to evaluate the fluctuations of the electrical properties of the network. It is also employed to assign an effective bulk resistivity to a discrete conducting 3D mesh.
    langue originaleAnglais
    Numéro d'article043307
    Pages (de - à)043307
    Nombre de pages16
    journalPhysical Review E
    Volume97
    Numéro de publication4
    Les DOIs
    Etat de la publicationPublié - 17 avr. 2018

    Empreinte digitale Examiner les sujets de recherche de « Modeling the electrical properties of three-dimensional printed meshes with the theory of resistor lattices ». Ensemble, ils forment une empreinte digitale unique.

  • Projets

    Contient cette citation