Mitochondrial remodeling in hepatic differentiation and dedifferentiation

Anaïs Wanet, Noémie Remacle, Mehdi Najar, Etienne Sokal, Thierry Arnould, Mustapha Najimi, Patricia Renard

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

215 Téléchargements (Pure)

Résumé

Mitochondrial biogenesis and metabolism have recently emerged as important actors of stemness and differentiation. On the one hand, the differentiation of stem cells is associated with an induction of mitochondrial biogenesis and a shift from glycolysis toward oxidative phosphorylations (OXPHOS). In addition, interfering with mitochondrial biogenesis or function impacts stem cell differentiation. On the other hand, some inverse changes in mitochondrial abundance and function are observed during the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Yet although great promises in cell therapy might generate better knowledge of the mechanisms regulating the stemness and differentiation of somatic stem cells (SSCs)-which are preferred over embryonic stem cells (ESCs) and iPSCs because of ethical and safety considerations-little interest was given to the study of their mitochondria. This study provides a detailed characterization of the mitochondrial biogenesis occurring during the hepatogenic differentiation of bone marrow-mesenchymal stem cells (BM-MSCs). During the hepatogenic differentiation of BM-MSCs, an increased abundance of mitochondrial DNA (mtDNA) is observed, as well as an increased expression of several mitochondrial proteins and biogenesis regulators, concomitant with increased OXPHOS activity, capacity, and efficiency. In addition, opposite changes in mitochondrial morphology and in the abundance of several OXPHOS subunits were found during the spontaneous dedifferentiation of primary hepatocytes. These data support reverse mitochondrial changes in a different context from genetically-engineered reprogramming. They argue in favor of a mitochondrial involvement in hepatic differentiation and dedifferentiation.

langue originaleAnglais
Pages (de - à)174-185
Nombre de pages12
journalThe international journal of Biochemistry & Cell biology
Volume54C
Date de mise en ligne précoce30 juil. 2014
Les DOIs
Etat de la publicationPublié - 2014

Empreinte digitale

Examiner les sujets de recherche de « Mitochondrial remodeling in hepatic differentiation and dedifferentiation ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation