Minimizing convex quadratics with variable precision Krylov methods

Serge Gratton, Ehouarn Simon, Philippe Toint

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

13 Téléchargements (Pure)

Résumé

Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients and a Full-Orthormalization methods are derived, the necessary quantities occurring in the theoretical bounds estimated and new practical algorithms derived. Numerical experiments suggest that the new methods have significant potential, including in the steadily more important context of multi-precision computations.
langue originaleAnglais
Pages (de - à)e2337
Nombre de pages26
journalNumerical Linear Algebra with Applications
Volume28
Numéro de publication1
Etat de la publicationPublié - 1 oct. 2020

Empreinte digitale

Examiner les sujets de recherche de « Minimizing convex quadratics with variable precision Krylov methods ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation