Résumé
Deep neural networks are usually trained in the space of the nodes, by adjusting the weights of existing links via suitable optimization protocols. We here propose a radically new approach which anchors the learning process to reciprocal space. Specifically, the training acts on the spectral domain and seeks to modify the eigenvalues and eigenvectors of transfer operators in direct space. The proposed method is ductile and can be tailored to return either linear or non-linear classifiers. Adjusting the eigenvalues, when freezing the eigenvectors entries, yields performances that are superior to those attained with standard methods restricted to operate with an identical number of free parameters. To recover a feed-forward architecture in direct space, we have postulated a nested indentation of the eigenvectors. Different non-orthogonal basis could be employed to export the spectral learning to other frameworks, as e.g. reservoir computing.
langue originale | Anglais |
---|---|
Numéro d'article | 1330 |
journal | Nature Communications |
Volume | 12 |
Numéro de publication | 1 |
Les DOIs | |
Etat de la publication | Publié - 26 févr. 2021 |
Empreinte digitale
Examiner les sujets de recherche de « Machine learning in spectral domain ». Ensemble, ils forment une empreinte digitale unique.Thèses de l'étudiant
-
A Journey Through Reciprocal Space: from Deep Spectral Learning to Topological Signals
Giambagli, L. (Auteur), Carletti, T. (Promoteur), Fanelli, D. (Copromoteur), Libert, A.-S. (Président), Frasca, M. (Jury), SCHAUB, M. (Jury) & Clementi, C. (Jury), 21 févr. 2024Student thesis: Doc types › Docteur en Sciences
Fichier