LQ-optimal boundary control of infinite-dimensional systems with Yosida-type approximate boundary observation

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

A class of boundary control systems with boundary observation is considered, for which the unbounded operators often lead to technical difficulties. An extended model for this class of systems is described and analyzed, which involves no unbounded operator except for the dynamics generator. A method for the resolution of the LQ-optimal control problem for this model is described and the solution provides a stabilizing feedback for the nominal system with unbounded operators, in the sense that, in closed-loop, the state trajectories converge to zero exponentially fast. The model consists of an extended abstract differential equation whose state components are the boundary input, the state (up to an affine transformation) and a Yosida-type approximation of the output of the nominal system. It is shown that, under suitable conditions, the model is well-posed and, in particular, that the dynamics operator is the generator of a C0-semigroup. Moreover, the model is shown to be observable and to carry controllability, stabilizability and detectability properties from the nominal system. A general method of resolution based on the problem of spectral factorization of a multi-dimensional operator-valued spectral density is described in order to solve a LQ-optimal control problem for this model. It is expected that this approach will lead hopefully to a good trade-off between the cost of modeling and the efficiency of methods of resolution of control problems for such systems.

langue originaleAnglais
Pages (de - à)94-106
Nombre de pages13
journalAutomatica
Volume67
Les DOIs
étatPublié - 1 mai 2016

Empreinte digitale

Spectral density
Controllability
Factorization
Mathematical operators
Differential equations
Trajectories
Feedback
Control systems
Costs

mots-clés

    Citer ceci

    @article{d1e5e343b2d14e5bb4f1223a681abcc0,
    title = "LQ-optimal boundary control of infinite-dimensional systems with Yosida-type approximate boundary observation",
    abstract = "A class of boundary control systems with boundary observation is considered, for which the unbounded operators often lead to technical difficulties. An extended model for this class of systems is described and analyzed, which involves no unbounded operator except for the dynamics generator. A method for the resolution of the LQ-optimal control problem for this model is described and the solution provides a stabilizing feedback for the nominal system with unbounded operators, in the sense that, in closed-loop, the state trajectories converge to zero exponentially fast. The model consists of an extended abstract differential equation whose state components are the boundary input, the state (up to an affine transformation) and a Yosida-type approximation of the output of the nominal system. It is shown that, under suitable conditions, the model is well-posed and, in particular, that the dynamics operator is the generator of a C0-semigroup. Moreover, the model is shown to be observable and to carry controllability, stabilizability and detectability properties from the nominal system. A general method of resolution based on the problem of spectral factorization of a multi-dimensional operator-valued spectral density is described in order to solve a LQ-optimal control problem for this model. It is expected that this approach will lead hopefully to a good trade-off between the cost of modeling and the efficiency of methods of resolution of control problems for such systems.",
    keywords = "Boundary, Control, Distributed-parameter systems, LQR control method, Modeling, Observation, Spectral factorization",
    author = "J{\'e}r{\'e}my Dehaye and Joseph Winkin",
    year = "2016",
    month = "5",
    day = "1",
    doi = "10.1016/j.automatica.2015.12.033",
    language = "English",
    volume = "67",
    pages = "94--106",
    journal = "Automatica",
    issn = "0005-1098",
    publisher = "Elsevier Limited",

    }

    LQ-optimal boundary control of infinite-dimensional systems with Yosida-type approximate boundary observation. / Dehaye, Jérémy; Winkin, Joseph.

    Dans: Automatica, Vol 67, 01.05.2016, p. 94-106.

    Résultats de recherche: Contribution à un journal/une revueArticle

    TY - JOUR

    T1 - LQ-optimal boundary control of infinite-dimensional systems with Yosida-type approximate boundary observation

    AU - Dehaye, Jérémy

    AU - Winkin, Joseph

    PY - 2016/5/1

    Y1 - 2016/5/1

    N2 - A class of boundary control systems with boundary observation is considered, for which the unbounded operators often lead to technical difficulties. An extended model for this class of systems is described and analyzed, which involves no unbounded operator except for the dynamics generator. A method for the resolution of the LQ-optimal control problem for this model is described and the solution provides a stabilizing feedback for the nominal system with unbounded operators, in the sense that, in closed-loop, the state trajectories converge to zero exponentially fast. The model consists of an extended abstract differential equation whose state components are the boundary input, the state (up to an affine transformation) and a Yosida-type approximation of the output of the nominal system. It is shown that, under suitable conditions, the model is well-posed and, in particular, that the dynamics operator is the generator of a C0-semigroup. Moreover, the model is shown to be observable and to carry controllability, stabilizability and detectability properties from the nominal system. A general method of resolution based on the problem of spectral factorization of a multi-dimensional operator-valued spectral density is described in order to solve a LQ-optimal control problem for this model. It is expected that this approach will lead hopefully to a good trade-off between the cost of modeling and the efficiency of methods of resolution of control problems for such systems.

    AB - A class of boundary control systems with boundary observation is considered, for which the unbounded operators often lead to technical difficulties. An extended model for this class of systems is described and analyzed, which involves no unbounded operator except for the dynamics generator. A method for the resolution of the LQ-optimal control problem for this model is described and the solution provides a stabilizing feedback for the nominal system with unbounded operators, in the sense that, in closed-loop, the state trajectories converge to zero exponentially fast. The model consists of an extended abstract differential equation whose state components are the boundary input, the state (up to an affine transformation) and a Yosida-type approximation of the output of the nominal system. It is shown that, under suitable conditions, the model is well-posed and, in particular, that the dynamics operator is the generator of a C0-semigroup. Moreover, the model is shown to be observable and to carry controllability, stabilizability and detectability properties from the nominal system. A general method of resolution based on the problem of spectral factorization of a multi-dimensional operator-valued spectral density is described in order to solve a LQ-optimal control problem for this model. It is expected that this approach will lead hopefully to a good trade-off between the cost of modeling and the efficiency of methods of resolution of control problems for such systems.

    KW - Boundary

    KW - Control

    KW - Distributed-parameter systems

    KW - LQR control method

    KW - Modeling

    KW - Observation

    KW - Spectral factorization

    UR - http://www.scopus.com/inward/record.url?scp=84960362975&partnerID=8YFLogxK

    U2 - 10.1016/j.automatica.2015.12.033

    DO - 10.1016/j.automatica.2015.12.033

    M3 - Article

    VL - 67

    SP - 94

    EP - 106

    JO - Automatica

    JF - Automatica

    SN - 0005-1098

    ER -