LIGO Lo(g)Normal MACHO: Primordial Black Holes survive SN lensing constraints

Juan Garcia-Bellido, Sebastien Clesse, Pierre Fleury

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    Résumé

    It has been claimed that massive primordial black holes (PBH) cannot constitute all of the dark matter (DM), because their gravitational-lensing imprint on the Hubble diagram of type Ia supernovae (SN) would be incompatible with present observations. In this paper, we critically review those constraints and find several caveats on the analysis. First of all, the constraints on the fraction $\alpha$ of PBH in matter seem to be driven by a very restrictive choice of priors on the cosmological parameters. In particular, the degeneracy between $\Omega_{\rm M}$ and $\alpha$ is ignored and thus, by fixing $\Omega_{\rm M}$, transferred the constraining power of SN magnitudes to $\alpha$. Furthermore, by considering more realistic physical sizes for the type-Ia supernovae, we find an effect on the SN lensing magnification distribution that leads to significantly looser constraints. Moreover, considering a wide mass spectrum of PBH, such as a lognormal distribution, further softens the constraints from SN lensing. Finally, we find that the fraction of PBH that could constitute DM today is bounded by fPBH<1.09 (1.38), for JLA (Union 2.1) catalogs, and thus it is perfectly compatible with an all-PBH dark matter scenario in the LIGO band.
    langue originaleAnglais
    Nombre de pages7
    journalPhysical Review D - Particles, Fields, Gravitation and Cosmology
    Etat de la publicationSoumis - 18 déc. 2017

    Empreinte digitale

    Examiner les sujets de recherche de « LIGO Lo(g)Normal MACHO: Primordial Black Holes survive SN lensing constraints ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation