Label-noise-tolerant classification for streaming data

Benoit Frenay, Barbara Hammer

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

23 Téléchargements (Pure)


Label noise-tolerant machine learning techniques address datasets which are affected by mislabelling of the instances. Since labelling quality is a severe issue in particular for large or streaming data sets, this setting becomes more and more relevant in the context of life-long learning, big data and crowd sourcing. In this contribution, we extend a powerful online learning method, soft robust learning vector quantisation, by a probabilistic model for noise tolerance, which is applicable for streaming data, including label-noise drift. The superiority of the technique is demonstrated in several benchmark problems.

langue originaleAnglais
titre2017 International Joint Conference on Neural Networks, IJCNN 2017 - Proceedings
EditeurInstitute of Electrical and Electronics Engineers Inc.
Nombre de pages8
ISBN (Electronique)9781509061815
ISBN (imprimé)9781509061815
Les DOIs
Etat de la publicationPublié - 30 juin 2017
Evénement2017 International Joint Conference on Neural Networks, IJCNN 2017 - Anchorage, États-Unis
Durée: 14 mai 201719 mai 2017

Série de publications

Nom2017 International Joint Conference on Neural Networks (IJCNN)

Une conférence

Une conférence2017 International Joint Conference on Neural Networks, IJCNN 2017
La villeAnchorage

Empreinte digitale

Examiner les sujets de recherche de « Label-noise-tolerant classification for streaming data ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation