Label-noise-tolerant classification for streaming data

Benoit Frenay, Barbara Hammer

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

7 Téléchargements (Pure)

Résumé

Label noise-tolerant machine learning techniques address datasets which are affected by mislabelling of the instances. Since labelling quality is a severe issue in particular for large or streaming data sets, this setting becomes more and more relevant in the context of life-long learning, big data and crowd sourcing. In this contribution, we extend a powerful online learning method, soft robust learning vector quantisation, by a probabilistic model for noise tolerance, which is applicable for streaming data, including label-noise drift. The superiority of the technique is demonstrated in several benchmark problems.

langue originaleAnglais
titre2017 International Joint Conference on Neural Networks, IJCNN 2017 - Proceedings
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages1748-1755
Nombre de pages8
Volume2017-May
ISBN (Electronique)9781509061815
ISBN (imprimé)9781509061815
Les DOIs
Etat de la publicationPublié - 30 juin 2017
Evénement2017 International Joint Conference on Neural Networks, IJCNN 2017 - Anchorage, États-Unis
Durée: 14 mai 201719 mai 2017

Une conférence

Une conférence2017 International Joint Conference on Neural Networks, IJCNN 2017
PaysÉtats-Unis
La villeAnchorage
période14/05/1719/05/17

Empreinte digitale Examiner les sujets de recherche de « Label-noise-tolerant classification for streaming data ». Ensemble, ils forment une empreinte digitale unique.

  • Contient cette citation

    Frenay, B., & Hammer, B. (2017). Label-noise-tolerant classification for streaming data. Dans 2017 International Joint Conference on Neural Networks, IJCNN 2017 - Proceedings (Vol 2017-May, p. 1748-1755). [7966062] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IJCNN.2017.7966062