Koopman-based lifting techniques for nonlinear systems identification

Alexandre Mauroy, Jorge Goncalves

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

44 Téléchargements (Pure)

Résumé

We develop a novel lifting technique for nonlinear system identification based on the framework of the Koopman operator. The key idea is to identify the linear (infinite dimensional) Koopman operator in the lifted space of observables, instead of identifying the nonlinear system in the state space, a process which results in a linear method for nonlinear systems identification. The proposed lifting technique is an indirect method that does not require to compute time derivatives and is therefore well-suited to low-sampling rate data sets. Considering different finite-dimensional subspaces to approximate and identify the Koopman operator, we propose two numerical schemes: a main method and a dual method. The main method is a parametric identification technique that can accurately reconstruct the vector field of a broad class of systems. The dual method provides estimates of the vector field at the data points and is well-suited to identify high-dimensional systems with small datasets. This paper describes the two methods, provides theoretical convergence results, and illustrates the lifting techniques with several examples.

langue originaleAnglais
Numéro d'article8836606
Pages (de - à)2550-2565
Nombre de pages16
journalIEEE Transactions on Automatic Control
Volume65
Numéro de publication6
Les DOIs
Etat de la publicationPublié - juin 2020

Empreinte digitale Examiner les sujets de recherche de « Koopman-based lifting techniques for nonlinear systems identification ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation