iPMDS: Interactive Probabilistic Multidimensional Scaling

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

18 Téléchargements (Pure)

Résumé

Dimensionality reduction is often used for visu-alization without considering their understanding by users. Multidimensional scaling, for instance, provides an arbitrarily-oriented visualization. However, users can be integrated into the loop to provide clues about their understanding of the visualization. In this paper, we propose an interactive proba-bilistic multidimensional scaling (iPMDS) approach to compute the visualization with the lowest information loss while taking the information provided by users into account. We show that a more interpretable visualization can be obtained after interacting with the visualization while keeping a good dimensionality reduction accuracy.
langue originaleAnglais
titreInternational Joint Conference on Neural Networks
Nombre de pages8
Etat de la publicationPublié - 2021

Empreinte digitale

Examiner les sujets de recherche de « iPMDS: Interactive Probabilistic Multidimensional Scaling ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation