Résumé
Silicon nanocrystals (Si-ncs) have been produced by implantation of Si in excess into SiO followed by both annealing and passivation using argon or nitrogen. Nitrogen increases the photoluminescence (PL) emission and shifts the spectra toward the blue. The measured Si-nc diameter is 4.3 and 3.8 nm after annealing performed under Ar and N, respectively. A significant quantity of nitrogen atoms has been detected in all samples by resonant nuclear reaction analysis (RNRA). The nitrogen concentration is significantly higher when the annealing and passivation are performed in a nitrogen environment, in agreement with a larger Si-N vibration signal on the Raman spectra. The depth profiles of nitrogen are very similar to those of Si-nc, suggesting that the N molecules may diffuse in the SiO during the annealing and then are trapped in proximity to the Si-nc. In addition to Si, the implantation of N to concentrations of 3 and 6 at. % produced a decrease in the PL intensity (accentuated at the higher concentration) and an increase in the Raman signal associated to Si-N vibrations. These results suggest that a relatively low nitrogen atomic fraction enhances the PL emission, since a large nitrogen concentration impedes the formation of Si-nc thus significantly decreasing the PL intensity.
langue originale | Anglais |
---|---|
journal | Journal of Applied Physics |
Volume | 105 |
Numéro de publication | 1 |
Les DOIs | |
Etat de la publication | Publié - 1 janv. 2009 |
Équipement
-
Synthèse, Irradiation et Analyse de Matériaux (SIAM) (2016 - ...)
Pierre Louette (!!Manager), Julien Colaux (!!Manager), Alexandre Felten (!!Manager), Jorge Humberto Mejia Mendoza (!!Manager) & Paul-Louis Debarsy (!!Manager)
Plateforme technologique Synthese, irradiation et analyse des materiauxEquipement/installations: Plateforme technolgique