Improving the Feature Selection Stability of the Delta Test in Regression

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

Feature selection is an important preprocessing step that helps to improve model performance and to extract knowledge about important features in a dataset. However, feature selection methods are known to be adversely impacted by changes in the training dataset: even small differences between input datasets can result in the selection of different feature sets. This letter tackles this issue in the particular case of the delta test (DT), a well-known feature relevance criterion that approximates the noise variance for regression tasks. A new feature selection criterion is proposed, the delta test bar, which is shown to be more stable than its close competitors.

langue originaleAnglais
Numéro d'article10248958
Pages (de - à)1911-1917
Nombre de pages7
journalIEEE Transactions on Artificial Intelligence
Volume5
Numéro de publication5
Les DOIs
Etat de la publicationPublié - 12 sept. 2023

Empreinte digitale

Examiner les sujets de recherche de « Improving the Feature Selection Stability of the Delta Test in Regression ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation