Impact of directionality on the emergence of Turing patterns on m-directed higher-order structures

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

21 Téléchargements (Pure)

Résumé

We hereby develop the theory of Turing instability for reaction-diffusion systems defined on m-directed hypergraphs, the latter being a generalization of hypergraphs where nodes forming hyperedges can be shared into two disjoint sets, the head nodes and the tail nodes. This framework encodes thus for a privileged direction for the reaction to occur: the joint action of tail nodes is a driver for the reaction involving head nodes. It thus results a natural generalization of directed networks. Based on a linear stability analysis, we have shown the existence of two Laplace matrices, allowing to analytically prove that Turing patterns, stationary or wave-like, emerge for a much broader set of parameters in the m-directed setting. In particular, directionality promotes Turing instability, otherwise absent in the symmetric case. Analytical results are compared to simulations performed by using the Brusselator model defined on a m-directed m-hyperring, as well as on a m-directed random hypergraph
langue originaleAnglais
Numéro d'article115730
journalChaos, Solitons & Fractals
Volume189
Numéro de publication2
Les DOIs
Etat de la publicationPublié - 15 nov. 2024

Empreinte digitale

Examiner les sujets de recherche de « Impact of directionality on the emergence of Turing patterns on m-directed higher-order structures ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation