Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: Role of autophagy and JNK activation

A. Notte, N. Ninane, T. Arnould, C. Michiels

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

59 Téléchargements (Pure)


Cancer cell resistance against chemotherapy is still a heavy burden to improve anticancer treatments. Autophagy activation and the development of hypoxic regions within the tumors are known to promote cancer cell resistance. Therefore, we sought to evaluate the role of autophagy and hypoxia on the taxol-induced apoptosis in MDA-MB-231 breast cancer cells. The results showed that taxol induced apoptosis after 16 h of incubation, and that hypoxia protected MDA-MB-231 cells from taxol-induced apoptosis. In parallel, taxol induced autophagy activation already after 2 h of incubation both under normoxia and hypoxia. Autophagy activation after taxol exposure was shown to be a protective mechanism against taxol-induced cell death both under normoxia and hypoxia. However, at longer incubation time, the autophagic process reached a saturation point under normoxia leading to cell death, whereas under hypoxia, autophagy flow still correctly took place allowing the cells to survive. Autophagy induction is induced after taxol exposure via mechanistic target of rapamycin (mTOR) inhibition, which is more important in cells exposed to hypoxia. Taxol also induced c-Jun N-terminal kinase (JNK) activation and phosphorylation of its substrates B-cell CLL/lymphoma 2 (Bcl) and BCL-like 1 (Bcl) under normoxia and hypoxia very early after taxol exposure. Bcl and Bcl phosphorylation was decreased more importantly under hypoxia after long incubation time. The role of JNK in autophagy and apoptosis induction was studied using siRNAs. The results showed that JNK activation promotes resistance against taxolinduced apoptosis under normoxia and hypoxia without being involved in induction of autophagy. In conclusion, the resistance against taxol-induced cell death observed under hypoxia can be explained by a more effective autophagic flow activated via the classical mTOR pathway and by a mechanism involving JNK, which could be dependent on Bcl and Bcl phosphorylation but independent of JNK-induced autophagy activation.
langue originaleAnglais
Pages (de - à)e638
Nombre de pages13
journalCell Death and Disease
Numéro de publication5
Les DOIs
Etat de la publicationPublié - 2013

Contient cette citation