Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: Towards the design of "Artificial Organs"

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

Background: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. Methodology/Principal Findings: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. Conclusions/Significance: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.
langue originaleAnglais
journalPLoS ONE
Volume6
Numéro de publication6
Les DOIs
étatPublié - 2011

Empreinte digitale

Animal Shells
Artificial Organs
Artificial organs
Cytoprotection
Drug and Narcotic Control
Drug delivery
alginates
engineering
Animals
Cells
Silicon Dioxide
drugs
silica
animals
cells
Transplantation (surgical)
Biosynthesis
Cell Transplantation
Hep G2 Cells
biocompatibility

Citer ceci

@article{431b3d6077dd47d594a98cccd4a9423f,
title = "Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: Towards the design of {"}Artificial Organs{"}",
abstract = "Background: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. Methodology/Principal Findings: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the {"}de novo{"} biosynthesis and secretion of albumin out of the beads. Conclusions/Significance: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.",
author = "P. Dandoy and C.F. Meunier and C. Michiels and B.-L. Su",
note = "Copyright 2011 Elsevier B.V., All rights reserved.",
year = "2011",
doi = "10.1371/journal.pone.0020983",
language = "English",
volume = "6",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery

T2 - Towards the design of "Artificial Organs"

AU - Dandoy, P.

AU - Meunier, C.F.

AU - Michiels, C.

AU - Su, B.-L.

N1 - Copyright 2011 Elsevier B.V., All rights reserved.

PY - 2011

Y1 - 2011

N2 - Background: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. Methodology/Principal Findings: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. Conclusions/Significance: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.

AB - Background: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. Methodology/Principal Findings: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. Conclusions/Significance: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.

UR - http://www.scopus.com/inward/record.url?scp=79959460118&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0020983

DO - 10.1371/journal.pone.0020983

M3 - Article

AN - SCOPUS:79959460118

VL - 6

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 6

ER -