Highly inclined and eccentric massive planets: II. Planet-planet interactions during the disc phase

Sotiris Sotiriadis, Anne Sophie Libert, Bertram Bitsch, Aurélien Crida

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

Context. Observational evidence indicates that the orbits of extrasolar planets are more various than the circular and coplanar ones of the solar system. Planet-planet interactions during migration in the protoplanetary disc have been invoked to explain the formation of these eccentric and inclined orbits. However, our companion paper (Paper I) on the planet-disc interactions of highly inclined and eccentric massive planets has shown that the damping induced by the disc is significant for a massive planet, leading the planet back to the midplane with its eccentricity possibly increasing over time. Aims. We aim to investigate the influence of the eccentricity and inclination damping due to planet-disc interactions on the final configurations of the systems, generalizing previous studies on the combined action of the gas disc and planet-planet scattering during the disc phase. Methods. Instead of the simplistic K-prescription, our N-body simulations adopt the damping formulae for eccentricity and inclination provided by the hydrodynamical simulations of our companion paper. We follow the orbital evolution of 11 000 numerical experiments of three giant planets in the late stage of the gas disc, exploring different initial configurations, planetary mass ratios and disc masses. Results. The dynamical evolutions of the planetary systems are studied along the simulations, with a particular emphasis on the resonance captures and inclination-growth mechanisms. Most of the systems are found with small inclinations (≤10°) at the dispersal of the disc. Even though many systems enter an inclination-type resonance during the migration, the disc usually damps the inclinations on a short timescale. Although the majority of the multiple systems in our simulations are quasi-coplanar, ∼5% of them end up with high mutual inclinations (=10°). Half of these highly mutually inclined systems result from two-or three-body mean-motion resonance captures, the other half being produced by orbital instability and/or planet-planet scattering. When considering the long-term evolution over 100 Myr, destabilization of the resonant systems is common, and the percentage of highly mutually inclined systems still evolving in resonance drops to 30%. Finally, the parameters of the final system configurations are in very good agreement with the semi-major axis and eccentricity distributions in the observations, showing that planet-planet interactions during the disc phase could have played an important role in sculpting planetary systems.

langueAnglais
Numéro d'articleA70
journalAstronomy and Astrophysics
Volume598
Les DOIs
étatPublié - 1 févr. 2017

Empreinte digitale

eccentrics
planets
interactions
planet
inclination
eccentricity
simulation
damping
configurations
planetary systems
orbits
orbitals
scattering
gases
gas
planetary mass
eccentric orbits
protoplanetary disks
destabilization
extrasolar planets

mots-clés

    Citer ceci

    @article{3437006fb98b48c6a309d48d44d67cf8,
    title = "Highly inclined and eccentric massive planets: II. Planet-planet interactions during the disc phase",
    abstract = "Context. Observational evidence indicates that the orbits of extrasolar planets are more various than the circular and coplanar ones of the solar system. Planet-planet interactions during migration in the protoplanetary disc have been invoked to explain the formation of these eccentric and inclined orbits. However, our companion paper (Paper I) on the planet-disc interactions of highly inclined and eccentric massive planets has shown that the damping induced by the disc is significant for a massive planet, leading the planet back to the midplane with its eccentricity possibly increasing over time. Aims. We aim to investigate the influence of the eccentricity and inclination damping due to planet-disc interactions on the final configurations of the systems, generalizing previous studies on the combined action of the gas disc and planet-planet scattering during the disc phase. Methods. Instead of the simplistic K-prescription, our N-body simulations adopt the damping formulae for eccentricity and inclination provided by the hydrodynamical simulations of our companion paper. We follow the orbital evolution of 11 000 numerical experiments of three giant planets in the late stage of the gas disc, exploring different initial configurations, planetary mass ratios and disc masses. Results. The dynamical evolutions of the planetary systems are studied along the simulations, with a particular emphasis on the resonance captures and inclination-growth mechanisms. Most of the systems are found with small inclinations (≤10°) at the dispersal of the disc. Even though many systems enter an inclination-type resonance during the migration, the disc usually damps the inclinations on a short timescale. Although the majority of the multiple systems in our simulations are quasi-coplanar, ∼5\{%} of them end up with high mutual inclinations (=10°). Half of these highly mutually inclined systems result from two-or three-body mean-motion resonance captures, the other half being produced by orbital instability and/or planet-planet scattering. When considering the long-term evolution over 100 Myr, destabilization of the resonant systems is common, and the percentage of highly mutually inclined systems still evolving in resonance drops to 30\{%}. Finally, the parameters of the final system configurations are in very good agreement with the semi-major axis and eccentricity distributions in the observations, showing that planet-planet interactions during the disc phase could have played an important role in sculpting planetary systems.",
    keywords = "Planet-disk interactions, Planets and satellites: dynamical evolution and stability, Planets and satellites: formation",
    author = "Sotiris Sotiriadis and Libert, {Anne Sophie} and Bertram Bitsch and Aur\{'e}lien Crida",
    year = "2017",
    month = "2",
    day = "1",
    doi = "10.1051/0004-6361/201628470",
    language = "English",
    volume = "598",
    journal = "Astronomy and Astrophysics",
    issn = "0250-6335",
    publisher = "Springer India",

    }

    Highly inclined and eccentric massive planets : II. Planet-planet interactions during the disc phase. / Sotiriadis, Sotiris; Libert, Anne Sophie; Bitsch, Bertram; Crida, Aurélien.

    Dans: Astronomy and Astrophysics, Vol 598, A70, 01.02.2017.

    Résultats de recherche: Contribution à un journal/une revueArticle

    TY - JOUR

    T1 - Highly inclined and eccentric massive planets

    T2 - Astronomy and Astrophysics

    AU - Sotiriadis,Sotiris

    AU - Libert,Anne Sophie

    AU - Bitsch,Bertram

    AU - Crida,Aurélien

    PY - 2017/2/1

    Y1 - 2017/2/1

    N2 - Context. Observational evidence indicates that the orbits of extrasolar planets are more various than the circular and coplanar ones of the solar system. Planet-planet interactions during migration in the protoplanetary disc have been invoked to explain the formation of these eccentric and inclined orbits. However, our companion paper (Paper I) on the planet-disc interactions of highly inclined and eccentric massive planets has shown that the damping induced by the disc is significant for a massive planet, leading the planet back to the midplane with its eccentricity possibly increasing over time. Aims. We aim to investigate the influence of the eccentricity and inclination damping due to planet-disc interactions on the final configurations of the systems, generalizing previous studies on the combined action of the gas disc and planet-planet scattering during the disc phase. Methods. Instead of the simplistic K-prescription, our N-body simulations adopt the damping formulae for eccentricity and inclination provided by the hydrodynamical simulations of our companion paper. We follow the orbital evolution of 11 000 numerical experiments of three giant planets in the late stage of the gas disc, exploring different initial configurations, planetary mass ratios and disc masses. Results. The dynamical evolutions of the planetary systems are studied along the simulations, with a particular emphasis on the resonance captures and inclination-growth mechanisms. Most of the systems are found with small inclinations (≤10°) at the dispersal of the disc. Even though many systems enter an inclination-type resonance during the migration, the disc usually damps the inclinations on a short timescale. Although the majority of the multiple systems in our simulations are quasi-coplanar, ∼5% of them end up with high mutual inclinations (=10°). Half of these highly mutually inclined systems result from two-or three-body mean-motion resonance captures, the other half being produced by orbital instability and/or planet-planet scattering. When considering the long-term evolution over 100 Myr, destabilization of the resonant systems is common, and the percentage of highly mutually inclined systems still evolving in resonance drops to 30%. Finally, the parameters of the final system configurations are in very good agreement with the semi-major axis and eccentricity distributions in the observations, showing that planet-planet interactions during the disc phase could have played an important role in sculpting planetary systems.

    AB - Context. Observational evidence indicates that the orbits of extrasolar planets are more various than the circular and coplanar ones of the solar system. Planet-planet interactions during migration in the protoplanetary disc have been invoked to explain the formation of these eccentric and inclined orbits. However, our companion paper (Paper I) on the planet-disc interactions of highly inclined and eccentric massive planets has shown that the damping induced by the disc is significant for a massive planet, leading the planet back to the midplane with its eccentricity possibly increasing over time. Aims. We aim to investigate the influence of the eccentricity and inclination damping due to planet-disc interactions on the final configurations of the systems, generalizing previous studies on the combined action of the gas disc and planet-planet scattering during the disc phase. Methods. Instead of the simplistic K-prescription, our N-body simulations adopt the damping formulae for eccentricity and inclination provided by the hydrodynamical simulations of our companion paper. We follow the orbital evolution of 11 000 numerical experiments of three giant planets in the late stage of the gas disc, exploring different initial configurations, planetary mass ratios and disc masses. Results. The dynamical evolutions of the planetary systems are studied along the simulations, with a particular emphasis on the resonance captures and inclination-growth mechanisms. Most of the systems are found with small inclinations (≤10°) at the dispersal of the disc. Even though many systems enter an inclination-type resonance during the migration, the disc usually damps the inclinations on a short timescale. Although the majority of the multiple systems in our simulations are quasi-coplanar, ∼5% of them end up with high mutual inclinations (=10°). Half of these highly mutually inclined systems result from two-or three-body mean-motion resonance captures, the other half being produced by orbital instability and/or planet-planet scattering. When considering the long-term evolution over 100 Myr, destabilization of the resonant systems is common, and the percentage of highly mutually inclined systems still evolving in resonance drops to 30%. Finally, the parameters of the final system configurations are in very good agreement with the semi-major axis and eccentricity distributions in the observations, showing that planet-planet interactions during the disc phase could have played an important role in sculpting planetary systems.

    KW - Planet-disk interactions

    KW - Planets and satellites: dynamical evolution and stability

    KW - Planets and satellites: formation

    UR - http://www.scopus.com/inward/record.url?scp=85011591484&partnerID=8YFLogxK

    U2 - 10.1051/0004-6361/201628470

    DO - 10.1051/0004-6361/201628470

    M3 - Article

    VL - 598

    JO - Astronomy and Astrophysics

    JF - Astronomy and Astrophysics

    SN - 0250-6335

    M1 - A70

    ER -