Résumé

The temperature dependence of many line parameters, such as pressure broadening coefficient or line intensities, are from primary importance in spectroscopy. The uses for these parameters range indeed from cold to hot environments. We can give as examples the planetary atmospheres, the combustions fumes or even stellar outer layers.
Another purpose is to check the empirical laws used to describe the temperature dependence of broadening[1] or shifts[2] coefficients. Here, we need a wide temperature range, in order to see deviations to the laws predictions[3].
Many experimental setups exist to achieve either low or high temperature. In the domain of low temperature, we can cite the supersonic jet expansion[4] or liquid-nitrogen cooled absorption cell[5]. In the domain of high temperature, many single pass cells exists[6,7,8], but only one multipass, with a Herriott design[9].
These absorption cells are often limited in reachable optical path length, operating temperature or incapacitated by the presence of a temperature gradient.
In this work we present a new White-type multipass absorption cell, able to achieve very high, uniform (in both time and space) temperature. The cell also offers an adaptable optical path length.
References
[1] G. Birnbaum, Adv. Chem. Phys. 12, 487, 1967
[2] R. R. Gamache, J. Lamouroux, V. Blot-Lafon, E. Lopes, J Quant. Spectrosc. Radiat. Transfer 135, 30, 2014
[3] M. Dhyne, P. Joubert, J.-C. Populaire, M. Lepère, J Quant. Spectrosc. Radiat. Transfer 111, 973, 2010
[4] K. Didriche, C. Lauzin, T. Foldes, X. de Ghellinck Vaernewijk d’Elseghem, M. Herman, Mol. Phys., 108, 2155, 2010
[5] C. Lerot, J. Walrand, G. Blanquet, J;-P. Bouanich, M. Lepère, J Mol. Spectrosc. 219, 329, 2003.
[6] L. Fissiaux, J.-C. Populaire, G. Blanquet, M. Lepère, J Mol. Spectrosc. 317, 26, 2015.
[7] M. Gharavi, S. G. Buckley, J Mol. Spectrosc. 229, 78, 2005
[8] A. E. Klingbeil, J. B. Jeffries, R. K. Hanson, J Quant. Spectrosc. Radiat. Transfer 107, 407, 2007
[9] R. Bartolome, M. Baer, M. W. Sigrist, Rev. of Sci. Instr. 78, 013110, 2007
langue originaleAnglais
Nombre de pages1
étatPublié - 28 août 2016

Empreinte digitale

cells
optical paths
space temperature
fumes
planetary atmospheres
pressure broadening
temperature dependence
coefficients
operating temperature
liquid nitrogen
temperature gradients
deviation
expansion
shift
predictions
spectroscopy
temperature

Citer ceci

@conference{e4330292965e40629ca01248355867b8,
title = "High Temperature Absorption Cell",
abstract = "The temperature dependence of many line parameters, such as pressure broadening coefficient or line intensities, are from primary importance in spectroscopy. The uses for these parameters range indeed from cold to hot environments. We can give as examples the planetary atmospheres, the combustions fumes or even stellar outer layers.Another purpose is to check the empirical laws used to describe the temperature dependence of broadening[1] or shifts[2] coefficients. Here, we need a wide temperature range, in order to see deviations to the laws predictions[3].Many experimental setups exist to achieve either low or high temperature. In the domain of low temperature, we can cite the supersonic jet expansion[4] or liquid-nitrogen cooled absorption cell[5]. In the domain of high temperature, many single pass cells exists[6,7,8], but only one multipass, with a Herriott design[9].These absorption cells are often limited in reachable optical path length, operating temperature or incapacitated by the presence of a temperature gradient. In this work we present a new White-type multipass absorption cell, able to achieve very high, uniform (in both time and space) temperature. The cell also offers an adaptable optical path length. References[1] G. Birnbaum, Adv. Chem. Phys. 12, 487, 1967[2] R. R. Gamache, J. Lamouroux, V. Blot-Lafon, E. Lopes, J Quant. Spectrosc. Radiat. Transfer 135, 30, 2014[3] M. Dhyne, P. Joubert, J.-C. Populaire, M. Lep{\`e}re, J Quant. Spectrosc. Radiat. Transfer 111, 973, 2010[4] K. Didriche, C. Lauzin, T. Foldes, X. de Ghellinck Vaernewijk d’Elseghem, M. Herman, Mol. Phys., 108, 2155, 2010[5] C. Lerot, J. Walrand, G. Blanquet, J;-P. Bouanich, M. Lep{\`e}re, J Mol. Spectrosc. 219, 329, 2003.[6] L. Fissiaux, J.-C. Populaire, G. Blanquet, M. Lep{\`e}re, J Mol. Spectrosc. 317, 26, 2015.[7] M. Gharavi, S. G. Buckley, J Mol. Spectrosc. 229, 78, 2005[8] A. E. Klingbeil, J. B. Jeffries, R. K. Hanson, J Quant. Spectrosc. Radiat. Transfer 107, 407, 2007[9] R. Bartolome, M. Baer, M. W. Sigrist, Rev. of Sci. Instr. 78, 013110, 2007",
author = "Sylvain Leonis and Olivier Browet and Nicolas Hespel and Muriel Lepere",
year = "2016",
month = "8",
day = "28",
language = "English",

}

High Temperature Absorption Cell. / Leonis, Sylvain; Browet, Olivier; Hespel, Nicolas; Lepere, Muriel.

2016.

Résultats de recherche: Contribution à un événement scientifique (non publié)Poster

TY - CONF

T1 - High Temperature Absorption Cell

AU - Leonis, Sylvain

AU - Browet, Olivier

AU - Hespel, Nicolas

AU - Lepere, Muriel

PY - 2016/8/28

Y1 - 2016/8/28

N2 - The temperature dependence of many line parameters, such as pressure broadening coefficient or line intensities, are from primary importance in spectroscopy. The uses for these parameters range indeed from cold to hot environments. We can give as examples the planetary atmospheres, the combustions fumes or even stellar outer layers.Another purpose is to check the empirical laws used to describe the temperature dependence of broadening[1] or shifts[2] coefficients. Here, we need a wide temperature range, in order to see deviations to the laws predictions[3].Many experimental setups exist to achieve either low or high temperature. In the domain of low temperature, we can cite the supersonic jet expansion[4] or liquid-nitrogen cooled absorption cell[5]. In the domain of high temperature, many single pass cells exists[6,7,8], but only one multipass, with a Herriott design[9].These absorption cells are often limited in reachable optical path length, operating temperature or incapacitated by the presence of a temperature gradient. In this work we present a new White-type multipass absorption cell, able to achieve very high, uniform (in both time and space) temperature. The cell also offers an adaptable optical path length. References[1] G. Birnbaum, Adv. Chem. Phys. 12, 487, 1967[2] R. R. Gamache, J. Lamouroux, V. Blot-Lafon, E. Lopes, J Quant. Spectrosc. Radiat. Transfer 135, 30, 2014[3] M. Dhyne, P. Joubert, J.-C. Populaire, M. Lepère, J Quant. Spectrosc. Radiat. Transfer 111, 973, 2010[4] K. Didriche, C. Lauzin, T. Foldes, X. de Ghellinck Vaernewijk d’Elseghem, M. Herman, Mol. Phys., 108, 2155, 2010[5] C. Lerot, J. Walrand, G. Blanquet, J;-P. Bouanich, M. Lepère, J Mol. Spectrosc. 219, 329, 2003.[6] L. Fissiaux, J.-C. Populaire, G. Blanquet, M. Lepère, J Mol. Spectrosc. 317, 26, 2015.[7] M. Gharavi, S. G. Buckley, J Mol. Spectrosc. 229, 78, 2005[8] A. E. Klingbeil, J. B. Jeffries, R. K. Hanson, J Quant. Spectrosc. Radiat. Transfer 107, 407, 2007[9] R. Bartolome, M. Baer, M. W. Sigrist, Rev. of Sci. Instr. 78, 013110, 2007

AB - The temperature dependence of many line parameters, such as pressure broadening coefficient or line intensities, are from primary importance in spectroscopy. The uses for these parameters range indeed from cold to hot environments. We can give as examples the planetary atmospheres, the combustions fumes or even stellar outer layers.Another purpose is to check the empirical laws used to describe the temperature dependence of broadening[1] or shifts[2] coefficients. Here, we need a wide temperature range, in order to see deviations to the laws predictions[3].Many experimental setups exist to achieve either low or high temperature. In the domain of low temperature, we can cite the supersonic jet expansion[4] or liquid-nitrogen cooled absorption cell[5]. In the domain of high temperature, many single pass cells exists[6,7,8], but only one multipass, with a Herriott design[9].These absorption cells are often limited in reachable optical path length, operating temperature or incapacitated by the presence of a temperature gradient. In this work we present a new White-type multipass absorption cell, able to achieve very high, uniform (in both time and space) temperature. The cell also offers an adaptable optical path length. References[1] G. Birnbaum, Adv. Chem. Phys. 12, 487, 1967[2] R. R. Gamache, J. Lamouroux, V. Blot-Lafon, E. Lopes, J Quant. Spectrosc. Radiat. Transfer 135, 30, 2014[3] M. Dhyne, P. Joubert, J.-C. Populaire, M. Lepère, J Quant. Spectrosc. Radiat. Transfer 111, 973, 2010[4] K. Didriche, C. Lauzin, T. Foldes, X. de Ghellinck Vaernewijk d’Elseghem, M. Herman, Mol. Phys., 108, 2155, 2010[5] C. Lerot, J. Walrand, G. Blanquet, J;-P. Bouanich, M. Lepère, J Mol. Spectrosc. 219, 329, 2003.[6] L. Fissiaux, J.-C. Populaire, G. Blanquet, M. Lepère, J Mol. Spectrosc. 317, 26, 2015.[7] M. Gharavi, S. G. Buckley, J Mol. Spectrosc. 229, 78, 2005[8] A. E. Klingbeil, J. B. Jeffries, R. K. Hanson, J Quant. Spectrosc. Radiat. Transfer 107, 407, 2007[9] R. Bartolome, M. Baer, M. W. Sigrist, Rev. of Sci. Instr. 78, 013110, 2007

M3 - Poster

ER -