HB-EGF synthesis and release induced by cholesterol depletion of human epidermal keratinocytes is controlled by extracellular ATP and involves both p38 and ERK1/2 signaling pathways

Séverine Giltaire, Sylviane Lambert, Yves Poumay

Résultats de recherche: Contribution à un journal/une revueArticle

87 Downloads (Pure)

Résumé

The heparin-binding EGF-like growth factor (HB-EGF) is an autocrine/paracrine keratinocyte growth factor, which binds to the epidermal growth factor (EGF) receptor family and plays a critical role during the re-epithelialization of cutaneous wound by stimulating the keratinocytes proliferation and migration. In this study, cellular stressing condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion using methyl-beta-cyclodextrin (MβCD). MβCD treatment induces the expression and the release of HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured particularly after 1 h of MβCD treatment. To investigate whether ATP contributes to the expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-γ-S, was used to mimic the extracellular ATP released. We report that keratinocytes stimulated with ATP-γ-S induce HB-EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of HB-EGF gene expression. These findings provide new insight into the signaling pathway by which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF synthesis and release by interacting with the P2 purinergic receptor and through p38 and ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early stress response in keratinocytes.
langue originaleAnglais
Pages (de - à)1651-9
Nombre de pages9
journalJournal of Cellular Physiology
Volume226
Numéro de publication6
Les DOIs
étatPublié - 2011

Empreinte digitale

MAP Kinase Signaling System
Keratinocytes
Adenosine Triphosphate
Cholesterol
Purinergic P2 Receptors
Lipids
Purinergic P2 Receptor Antagonists
Heparin-binding EGF-like Growth Factor
Fibroblast Growth Factor 7
Re-Epithelialization
p38 Mitogen-Activated Protein Kinases
Epidermal Growth Factor Receptor
Epidermal Growth Factor
Gene expression
Culture Media
Heparin
Intercellular Signaling Peptides and Proteins
Gene Expression
Skin

Citer ceci

@article{79d3ef585163464493b04bc97084425a,
title = "HB-EGF synthesis and release induced by cholesterol depletion of human epidermal keratinocytes is controlled by extracellular ATP and involves both p38 and ERK1/2 signaling pathways",
abstract = "The heparin-binding EGF-like growth factor (HB-EGF) is an autocrine/paracrine keratinocyte growth factor, which binds to the epidermal growth factor (EGF) receptor family and plays a critical role during the re-epithelialization of cutaneous wound by stimulating the keratinocytes proliferation and migration. In this study, cellular stressing condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion using methyl-beta-cyclodextrin (MβCD). MβCD treatment induces the expression and the release of HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured particularly after 1 h of MβCD treatment. To investigate whether ATP contributes to the expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-γ-S, was used to mimic the extracellular ATP released. We report that keratinocytes stimulated with ATP-γ-S induce HB-EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of HB-EGF gene expression. These findings provide new insight into the signaling pathway by which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF synthesis and release by interacting with the P2 purinergic receptor and through p38 and ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early stress response in keratinocytes.",
author = "S{\'e}verine Giltaire and Sylviane Lambert and Yves Poumay",
note = "Copyright {\circledC} 2010 Wiley-Liss, Inc.",
year = "2011",
doi = "10.1002/jcp.22496",
language = "English",
volume = "226",
pages = "1651--9",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",
number = "6",

}

HB-EGF synthesis and release induced by cholesterol depletion of human epidermal keratinocytes is controlled by extracellular ATP and involves both p38 and ERK1/2 signaling pathways. / Giltaire, Séverine; Lambert, Sylviane; Poumay, Yves.

Dans: Journal of Cellular Physiology, Vol 226, Numéro 6, 2011, p. 1651-9.

Résultats de recherche: Contribution à un journal/une revueArticle

TY - JOUR

T1 - HB-EGF synthesis and release induced by cholesterol depletion of human epidermal keratinocytes is controlled by extracellular ATP and involves both p38 and ERK1/2 signaling pathways

AU - Giltaire, Séverine

AU - Lambert, Sylviane

AU - Poumay, Yves

N1 - Copyright © 2010 Wiley-Liss, Inc.

PY - 2011

Y1 - 2011

N2 - The heparin-binding EGF-like growth factor (HB-EGF) is an autocrine/paracrine keratinocyte growth factor, which binds to the epidermal growth factor (EGF) receptor family and plays a critical role during the re-epithelialization of cutaneous wound by stimulating the keratinocytes proliferation and migration. In this study, cellular stressing condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion using methyl-beta-cyclodextrin (MβCD). MβCD treatment induces the expression and the release of HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured particularly after 1 h of MβCD treatment. To investigate whether ATP contributes to the expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-γ-S, was used to mimic the extracellular ATP released. We report that keratinocytes stimulated with ATP-γ-S induce HB-EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of HB-EGF gene expression. These findings provide new insight into the signaling pathway by which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF synthesis and release by interacting with the P2 purinergic receptor and through p38 and ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early stress response in keratinocytes.

AB - The heparin-binding EGF-like growth factor (HB-EGF) is an autocrine/paracrine keratinocyte growth factor, which binds to the epidermal growth factor (EGF) receptor family and plays a critical role during the re-epithelialization of cutaneous wound by stimulating the keratinocytes proliferation and migration. In this study, cellular stressing condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion using methyl-beta-cyclodextrin (MβCD). MβCD treatment induces the expression and the release of HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured particularly after 1 h of MβCD treatment. To investigate whether ATP contributes to the expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-γ-S, was used to mimic the extracellular ATP released. We report that keratinocytes stimulated with ATP-γ-S induce HB-EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of HB-EGF gene expression. These findings provide new insight into the signaling pathway by which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF synthesis and release by interacting with the P2 purinergic receptor and through p38 and ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early stress response in keratinocytes.

U2 - 10.1002/jcp.22496

DO - 10.1002/jcp.22496

M3 - Article

C2 - 21413023

VL - 226

SP - 1651

EP - 1659

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

IS - 6

ER -