Groupoid approach to noncommutative quantization of gravity

M. HELLER, Dominique Lambert, W. SASIN

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

We propose a new scheme for quantizing gravity based on a noncommutative geometry. Our geometry corresponds to a noncommutative algebra A=G∞c(G,C) of smooth compactly supported complex functions (with convolution as multiplication) on the groupoid G=E◃Γ being the semidirect product of a structured space E of constant dimension (or a smooth manifold) and a group Γ⁠. In the classical case E is the total space of the frame bundle and Γ is the Lorentz group. The differential geometry is developed in terms of a Z(A)-submodule V of derivations of A and a noncommutative counterpart of Einstein’s equation is defined. A pair (A,Ṽ)⁠, where Ṽ is a subset of derivations of A satisfying the noncommutative Einstein’s equation, is called an Einstein pair. We introduce the representation of A in a suitable Hilbert space, by completing A with respect to the corresponding norm change it into a C*-algebra, and perform quantization with the help of the standard C*-algebraic method. Hermitian elements of this algebra are interpreted as quantum gravity observables. We introduce dynamical equation of quantum gravity which, together with the noncommutative counterpart of Einstein’s equation, forms a noncommutative dynamical system. For a weak gravitational field this dynamical system splits into ordinary Einstein’s equation of general relativity and Schrödinger’s equation (in Heisenberg’s picture) of quantum mechanics. Some interpretative questions are considered.
langue originaleAnglais
Pages (de - à) 5840-5853
journalJournal of Mathematical Physics
Volume38
Numéro de publication11
Les DOIs
Etat de la publicationPublié - 1997

Empreinte digitale

Examiner les sujets de recherche de « Groupoid approach to noncommutative quantization of gravity ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation