Go Meta of Learned Cost Models: On the Power of Abstraction

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque


Cost-based optimization is a promising paradigm that relies on execution queries to enable fast and efficient ex- ecution reached by the database cost model (CM) during query processing/optimization. While a few database management systems (DBMS) already have support for mathematical CMs, developing such a CMs embedded or hard-coded for any DBMS remains a challenging and error-prone task. A generic interface must support a wide range of DBMS independently of the internal structure used for extending and modifying their signature; be efficient for good responsiveness. We propose a solution that provides a common set of parameters and cost primitives allowing intercepting the signature of the internal cost function and changing its internal parameters and configuration options. Therefore, the power of abstraction allows one to capture the designers/develop- ers intent at a higher level of abstraction and encode expert knowledge of domain-specific transformation in order to construct complex CMs, receiving quick feedback as they calibrate and alter the specifications. Our contribution relies on a generic CM interface supported by Model-Driven Engineering paradigm to create cost functions for database operations as intermediate specifications in which more optimization concerning the performance are delegated by our framework and that can be compiled and executed by the target DBMS. A proof-of-concept prototype is implemented by considering the CM that exists in PostgreSQL optimizer.
langue originaleAnglais
Lieu de publicationLisbon
EditeurScience and Technology Publications, Lda
Nombre de pages12
ISBN (imprimé)978-989-758-633-0
Les DOIs
Etat de la publicationPublié - 2023
Evénement11th International Conference on Model-Driven Engineering and Software Development - Lisbon, Portugal
Durée: 19 févr. 202321 févr. 2023
Numéro de conférence: 11

Série de publications

ISSN (imprimé)2184-4348

Une conférence

Une conférence11th International Conference on Model-Driven Engineering and Software Development
Titre abrégéMODELSWARD 2023
La villeLisbon
Adresse Internet

Empreinte digitale

Examiner les sujets de recherche de « Go Meta of Learned Cost Models: On the Power of Abstraction ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation