Globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds

Andy Conn, N. I. M. Gould, Philippe L. Toint

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    312 Téléchargements (Pure)

    Résumé

    The global and local convergence properties of a class of augmented Lagrangian methods for solving nonlinear programming problems are considered. In such methods, simple bound constraints are treated separately from more general constraints and the stopping rules for the inner minimization algorithm have this in mind. Global convergence is proved, and it is established that a potentially troublesome penalty parameter is bounded away from zero.
    langue originaleAnglais
    Pages (de - à)545-572
    Nombre de pages28
    journalSIAM Journal on Numerical Analysis
    Volume28
    Numéro de publication2
    Etat de la publicationPublié - 1 avr. 1991

    Empreinte digitale

    Examiner les sujets de recherche de « Globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation