Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator

Stéphane Valk, Nicolas Delsate, Anne Lemaître, Timoteo Carletti

    Résultats de recherche: Livre/Rapport/RevueAutre rapport

    Résumé

    In this paper we provide an extensive analysis of the global dynamics of high-area-to-mass ratios geosynchronous (GEO) space debris, applying a recent technique developed by Cincotta et al. (2000), Mean Exponential Growth factor of Nearby Orbits (MEGNO), which provides an efficient tool to investigate both regular and chaotic components of the phase space. We compute a stability atlas, for a large set of near-geosynchronous space debris by numerically computing the MEGNO indicator, to provide an accurate understanding of the location of stable and unstable orbits as well as the timescale of their exponential divergence in case of chaotic motion. The results improve the analysis presented in Breiter et al. (2005a) notably by considering the particular case of high-area-to-mass ratios space debris. The results indicate that chaotic orbits region can be highly relevant, especially for very high area-to-mass ratios. Then, we provide some numerical investigastions and an analytical theory which lead to a detailed understanding of the resonance structures appearing in the phase space. These analyses bring to the fore a relevant class of secondary resonances on both sides of the well-known pendulum-like pattern of geostationary space debris, leading to complex dynamics of such objects.
    langue originaleAnglais
    Lieu de publicationNamur
    EditeurFUNDP, Faculté des Sciences. Département de Mathématique.
    Etat de la publicationPublié - 2009

    Empreinte digitale Examiner les sujets de recherche de « Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation