Ginzburg-Landau approximation for self-sustained oscillators weakly coupled on complex directed graphs

Francesca Di Patti, Duccio Fanelli, Filippo Miele, Timoteo Carletti

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

124 Téléchargements (Pure)


A normal form approximation for the evolution of a reaction-diffusion system hosted on a directed graph is derived, in the vicinity of a supercritical Hopf bifurcation. Weak diffusive couplings are assumed to hold between adjacent nodes. Under this working assumption, a Complex Ginzburg–Landau equation (CGLE) is obtained, whose coefficients depend on the parameters of the model and the topological characteristics of the underlying network. The CGLE enables one to probe the stability of the synchronous oscillating solution, as displayed by the reaction-diffusion system above Hopf bifurcation. More specifically, conditions can be worked out for the onset of the symmetry breaking instability that eventually destroys the uniform oscillatory state. Numerical tests performed for the Brusselator model confirm the validity of the proposed theoretical scheme. Patterns recorded for the CGLE resemble closely those recovered upon integration of the original Brussellator dynamics.
langue originaleAnglais
Pages (de - à)447-456
journalCommunication in Nonlinear Science and Numerical Simulation
Les DOIs
Etat de la publicationPublié - 16 août 2017

Empreinte digitale Examiner les sujets de recherche de « Ginzburg-Landau approximation for self-sustained oscillators weakly coupled on complex directed graphs ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation