Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling

Stefanos Georganos, Tais Grippa, Assane Niang Gadiaga, Catherine Linard, Moritz Lennert, Sabine Vanhuysse, Nicholus Mboga, Eléonore Wolff, Stamatis Kalogirou

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity.

langue originaleAnglais
Nombre de pages17
journalGeocarto International
Les DOIs
Etat de la publicationPublié - 1 janv. 2019

Empreinte digitale Examiner les sujets de recherche de « Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation