Résumé
One approach to interpreting multidimensional scaling (MDS)
embeddings is to estimate a linear relationship between the MDS dimen-
sions and a set of external features. However, because MDS only preserves
distances between instances, the MDS embedding is invariant to rotation.
As a result, the weights characterizing this linear relationship are arbitrary
and difficult to interpret. This paper proposes a procedure for selecting
the most pertinent rotation for interpreting a 2D MDS embedding.
embeddings is to estimate a linear relationship between the MDS dimen-
sions and a set of external features. However, because MDS only preserves
distances between instances, the MDS embedding is invariant to rotation.
As a result, the weights characterizing this linear relationship are arbitrary
and difficult to interpret. This paper proposes a procedure for selecting
the most pertinent rotation for interpreting a 2D MDS embedding.
langue originale | Anglais |
---|---|
titre | 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
Sous-titre | ESANN 2018 : Bruges, Belgium, April 25, 26, 27, 2018 |
rédacteurs en chef | Michel Verleysen |
Lieu de publication | Louvain-la-Neuve |
Editeur | CIACO |
Pages | 537-542 |
ISBN (Electronique) | 9782875870476 |
Etat de la publication | Publié - 1 janv. 2018 |
Evénement | 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018) - Bruges, Bruges, Belgique Durée: 25 avr. 2018 → 27 avr. 2018 |
Une conférence
Une conférence | 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018) |
---|---|
Pays/Territoire | Belgique |
La ville | Bruges |
période | 25/04/18 → 27/04/18 |
Empreinte digitale
Examiner les sujets de recherche de « Finding the Most Interpretable MDS Rotation for Sparse Linear Models based on External Features ». Ensemble, ils forment une empreinte digitale unique.Thèses de l'étudiant
-
Interpretability and Explainability in Machine Learning and their Application to Nonlinear Dimensionality Reduction
Bibal, A. (Auteur), FRENAY, B. (Promoteur), VANHOOF, W. (Président), Cleve, A. (Jury), Dumas, B. (Jury), Lee, J. A. (Jury) & Galarraga, L. (Jury), 16 nov. 2020Student thesis: Doc types › Docteur en Sciences
Fichier