FairBayRank: A Fair Personalized Bayesian Ranker

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

21 Téléchargements (Pure)

Résumé

Recommender systems are data-driven models that successfully pro- vide users with personalized rankings of items (movies, books...). Meanwhile, for user minority groups, those systems can be unfair in predicting users’ expectations due to biased data. Consequently, fairness remains an open challenge in the rank- ing prediction task. To address this issue, we propose in this paper FairBayRank, a fair Bayesian personalized ranking algorithm that deals with both fairness and ranking performance requirements. FairBayRank evaluation on real-world datasets shows that it efficiently alleviates unfairness issues while ensuring high prediction performances.
langue originaleAnglais
titre31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Bruges, Belgium October 04 - 06
Etat de la publicationPublié - 2023
Evénement31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Bruges, Belgique
Durée: 4 oct. 20236 oct. 2023
Numéro de conférence: 31
https://www.esann.org

Une conférence

Une conférence31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Pays/TerritoireBelgique
La villeBruges
période4/10/236/10/23
Adresse Internet

Empreinte digitale

Examiner les sujets de recherche de « FairBayRank: A Fair Personalized Bayesian Ranker ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation