Résumé
Recommender systems are data-driven models that successfully pro- vide users with personalized rankings of items (movies, books...). Meanwhile, for user minority groups, those systems can be unfair in predicting users’ expectations due to biased data. Consequently, fairness remains an open challenge in the rank- ing prediction task. To address this issue, we propose in this paper FairBayRank, a fair Bayesian personalized ranking algorithm that deals with both fairness and ranking performance requirements. FairBayRank evaluation on real-world datasets shows that it efficiently alleviates unfairness issues while ensuring high prediction performances.
langue originale | Anglais |
---|---|
titre | 31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Bruges, Belgium October 04 - 06 |
Etat de la publication | Publié - 2023 |
Evénement | 31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Bruges, Belgique Durée: 4 oct. 2023 → 6 oct. 2023 Numéro de conférence: 31 https://www.esann.org |
Une conférence
Une conférence | 31st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
---|---|
Pays/Territoire | Belgique |
La ville | Bruges |
période | 4/10/23 → 6/10/23 |
Adresse Internet |