Extreme phase sensitivity in systems with fractal isochrons

A. Mauroy, Igor Mezić

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

Sensitivity to initial conditions is usually associated with chaotic dynamics and strange attractors. However, even systems with (quasi)periodic dynamics can exhibit it. In this context we report on the fractal properties of the isochrons of some continuous-time asymptotically periodic systems. We define a global measure of phase sensitivity that we call the phase sensitivity coefficient and show that it is an invariant of the system related to the capacity dimension of the isochrons. Similar results are also obtained with discrete-time systems. As an illustration of the framework, we compute the phase sensitivity coefficient for popular models of bursting neurons, suggesting that some elliptic bursting neurons are characterized by isochrons of high fractal dimensions and exhibit a very sensitive (unreliable) phase response.

langue originaleAnglais
Pages (de - à)40-51
Nombre de pages12
journalPhysica D: Nonlinear Phenomena
Volume308
Les DOIs
Etat de la publicationPublié - 6 juil. 2015
Modification externeOui

Empreinte digitale

Examiner les sujets de recherche de « Extreme phase sensitivity in systems with fractal isochrons ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation