Résumé
We investigate the causal relations in the space of states of almost commutative Lorentzian geometries. We fully describe the causal structure of a simple model based on the algebra $\mathcal{S}(\mathbb{R}^{1,1}) \otimes M_2(\mathbb{C})$, which has a non-trivial space of internal degrees of freedom. It turns out that the causality condition imposes restrictions on the motion in the internal space. Moreover, we show that the requirement of causality favours a unitary evolution in the internal space.
langue originale | Français |
---|---|
Nombre de pages | 23 |
journal | Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) |
Volume | 10 |
Numéro de publication | 010 |
Les DOIs | |
Etat de la publication | Publié - 28 janv. 2014 |
mots-clés
- noncommutative geometry
- causal structures