Explicit or Implicit? On Feature Engineering for ML-based Variability-intensive Systems

Paul Temple, Gilles Perrouin

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

16 Téléchargements (Pure)

Résumé

Software variability engineering benefits from Machine Learning (ML) to learn e.g., variability-Aware performance models, explore variants of interest and minimize their energy impact. As the number of applications of combining variability with ML grows, we would like to reflect on what is the core to the configuration process in software variability and inference in ML: feature engineering. These disciplines previously managed features explicitly, easing graceful combinations. Now, deep learning techniques derive automatically obscure but efficient features from data.

langue originaleAnglais
titreProceedings of the 17th International Working Conference on Variability Modelling of Software-Intensive Systems, VaMoS 2023, Odense, Denmark, January 25-27, 2023
Sous-titre17th International Working Conference on Variability Modelling of Software-Intensive Systems
rédacteurs en chefMyra B. Cohen, Thomas Thüm, Jacopo Mauro
EditeurACM Press
Pages91-93
Nombre de pages3
ISBN (Electronique)9798400700019
Les DOIs
Etat de la publicationPublié - 25 janv. 2023

Série de publications

NomACM International Conference Proceeding Series

Empreinte digitale

Examiner les sujets de recherche de « Explicit or Implicit? On Feature Engineering for ML-based Variability-intensive Systems ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation