Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization

Philippe Toint, Coralia Cartis, Nick Gould

Résultats de recherche: Contribution à un journal/une revueArticle

112 Téléchargements (Pure)

Résumé

The adaptive cubic regularization algorithms described in Cartis, Gould and Toint [Adaptive cubic regularisation methods for unconstrained optimization Part II: Worst-case function- and derivative-evaluation complexity, Math. Program. (2010), doi:10.1007/s10107-009-0337-y (online)]; [Part I: Motivation, convergence and numerical results, Math. Program. 127(2) (2011), pp. 245-295] for unconstrained (nonconvex) optimization are shown to have improved worst-case efficiency in terms of the function- and gradient-evaluation count when applied to convex and strongly convex objectives. In particular, our complexity upper bounds match in order (as a function of the accuracy of approximation), and sometimes even improve, those obtained by Nesterov [Introductory Lectures on Convex Optimization, Kluwer Academic Publishers, Dordrecht, 2004; Accelerating the cubic regularization of Newton's method on convex problems, Math. Program. 112(1) (2008), pp. 159-181] and Nesterov and Polyak [Cubic regularization of Newton's method and its global performance, Math. Program. 108(1) (2006), pp. 177-205] for these same problem classes, without requiring exact Hessians or exact or global solution of the subproblem. An additional outcome of our approximate approach is that our complexity results can naturally capture the advantages of both first- and second-order methods. © 2012 Taylor & Francis.
langue originaleAnglais
Pages (de - à)197-219
Nombre de pages23
journalOptimization Methods and Software
Volume27
Numéro de publication2
Les DOIs
Etat de la publicationPublié - 1 avr. 2012

Empreinte digitale Examiner les sujets de recherche de « Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization ». Ensemble, ils forment une empreinte digitale unique.

  • Projets

    Complexity in nonlinear optimization

    TOINT, P., Gould, N. I. M. & Cartis, C.

    1/11/08 → …

    Projet: Recherche

    Activités

    • 4 Présentation orale
    • 1 Recherche/Enseignement dans une institution externe
    • 1 Visite à une institution académique externe

    How much patience do you have? Issues in complexity for nonlinear optimization

    Philippe Toint (Orateur invité)

    5 févr. 2016

    Activité: Types de discours ou de présentationPrésentation orale

    How much patience do you have? Issues in complexity for nonlinear optimization

    Philippe Toint (Orateur)

    31 janv. 2016

    Activité: Types de discours ou de présentationPrésentation orale

    Polytechnic University of Hong Kong

    Philippe Toint (Chercheur visiteur)

    31 janv. 201614 févr. 2016

    Activité: Types de Visite d'une organisation externeRecherche/Enseignement dans une institution externe

    Contient cette citation