Evaluating a Conversational Agent for Open Government Data Quality Assessment

Résultats de recherche: Contribution à un événement scientifique (non publié)PapierRevue par des pairs

124 Téléchargements (Pure)

Résumé

Governments have been publishing Open Government Data (OGD) on online portals to encourage the development of value-added services. The success of these services depends heavily on the quality of OGD and its metadata. Several methods have been proposed to evaluate this quality, but some rely on manual assessments, which can be time-consuming and expensive to perform. Furthermore, these methods focus on the portal rather than the data, ignore user preferences, or do not distinguish between metadata and data quality. This makes it difficult for users to identify data quality issues. This paper proposes a list of OGD quality dimensions for assessing data and metadata quality. The dimensions were identified through a literature review and integrated into a novel conversational agent that incorporates user preferences into the quality assessment. A usability evaluation with 14 users reveals its ease of use and usefulness for obtaining overall and detailed (meta)data quality.
langue originaleAnglais
Nombre de pages10
Etat de la publicationAccepté/sous presse - juil. 2023
EvénementAMCIS 2023 - Panama City, Panama
Durée: 10 août 202312 août 2023

Comité scientifique

Comité scientifiqueAMCIS 2023
Pays/TerritoirePanama
La villePanama City
période10/08/2312/08/23

Empreinte digitale

Examiner les sujets de recherche de « Evaluating a Conversational Agent for Open Government Data Quality Assessment ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation