TY - JOUR
T1 - Enzymatic Synthesis of Biologically Active H-Phosphinic Analogue of α-Ketoglutarate
AU - Filonov, Vsevolod L.
AU - Khomutov, Maxim A.
AU - Tkachev, Yaroslav V.
AU - Udod, Artem V.
AU - Yanvarev, Dmitry V.
AU - Giovannercole, Fabio
AU - Khurs, Elena N.
AU - Kochetkov, Sergei N.
AU - De Biase, Daniela
AU - Khomutov, Alex R.
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/12
Y1 - 2024/12
N2 - Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen–phosphorus–carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites. Previous studies employing NMR-based metabolomic and proteomic analyses show that in Escherichia coli, α-KG-γ-PH (the distal H-phosphinic analogue of α-ketoglutarate) can be converted into L-Glu-γ-PH. Notably, α-KG-γ-PH and L-Glu-γ-PH are antibacterial compounds, but their intracellular targets only partially overlap. L-Glu-γ-PH is known to be a substrate of aspartate transaminase and glutamate decarboxylase, but its substrate properties with NAD+-dependent glutamate dehydrogenase (GDH) have never been investigated. Compounds containing P-H bonds are strong reducing agents; therefore, enzymatic NAD+-dependent oxidation is not self-evident. Herein, we demonstrate that L-Glu-γ-PH is a substrate of eukaryotic GDH and that the pH optimum of L-Glu-γ-PH NAD+-dependent oxidative deamination is shifted to a slightly alkaline pH range compared to L-glutamate. By 31P NMR, we observe that α-KG-γ-PH exists in a pH-dependent equilibrium of keto and germinal diol forms. Furthermore, the stereospecific enzymatic synthesis of α-KG-γ-PH from L-Glu-γ-PH using GDH is a possible route for its bio-based synthesis.
AB - Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The H-phosphinic group, with hydrogen–phosphorus–carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino-H-phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites. Previous studies employing NMR-based metabolomic and proteomic analyses show that in Escherichia coli, α-KG-γ-PH (the distal H-phosphinic analogue of α-ketoglutarate) can be converted into L-Glu-γ-PH. Notably, α-KG-γ-PH and L-Glu-γ-PH are antibacterial compounds, but their intracellular targets only partially overlap. L-Glu-γ-PH is known to be a substrate of aspartate transaminase and glutamate decarboxylase, but its substrate properties with NAD+-dependent glutamate dehydrogenase (GDH) have never been investigated. Compounds containing P-H bonds are strong reducing agents; therefore, enzymatic NAD+-dependent oxidation is not self-evident. Herein, we demonstrate that L-Glu-γ-PH is a substrate of eukaryotic GDH and that the pH optimum of L-Glu-γ-PH NAD+-dependent oxidative deamination is shifted to a slightly alkaline pH range compared to L-glutamate. By 31P NMR, we observe that α-KG-γ-PH exists in a pH-dependent equilibrium of keto and germinal diol forms. Furthermore, the stereospecific enzymatic synthesis of α-KG-γ-PH from L-Glu-γ-PH using GDH is a possible route for its bio-based synthesis.
KW - glutamate dehydrogenase
KW - glutamate metabolism
KW - H-phosphinic analogue of α-ketoglutarate
KW - H-phosphinic analogues of glutamate
UR - http://www.scopus.com/inward/record.url?scp=85213377373&partnerID=8YFLogxK
U2 - 10.3390/biom14121574
DO - 10.3390/biom14121574
M3 - Article
AN - SCOPUS:85213377373
SN - 2218-273X
VL - 14
JO - Biomolecules
JF - Biomolecules
IS - 12
M1 - 1574
ER -