TY - JOUR
T1 - Effects of dietary linseed oil on innate immune system of Eurasian perch and disease resistance after exposure to Aeromonas salmonicida achromogen
AU - Geay, F.
AU - Mellery, J.
AU - Tinti, E.
AU - Douxfils, Jessica
AU - Larondelle, Y.
AU - Mandiki, Robert
AU - Kestemont, P.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - This study was designated to investigate the effects of dietary fish oil (FO diet) replacement by linseed oil (LO diet) on regulation of immune response and disease resistance in Eurasian perch (Perca fluviatilis). A control diet containing fish oil (FO = cod liver oil) and characterized by high levels of n-3 high LC-PUFA (6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet) composed of low LC-PUFA contents (1% EPA, 2.3% DHA of total FAs) but high C18 fatty acids levels. The experiment was conducted in quadruplicate groups of 80 fish each. After 10 weeks of feeding, the innate immune status was evaluated in various organs (liver, spleen, and head-kidney) (feeding condition). Two days later, a bacterial challenge was performed on fish from 2 rearing conditions: fish infected with Aeromonas salmonicida (bacteria condition) and fish injected with sterile medium but maintained in the same flow system that fish challenged with bacteria (sentinel condition). Three days after injection of bacteria, a significant decrease of lymphocyte, thrombocyte and basophil populations was observed while neutrophils were not affected. In addition, plasma lysozyme activity and reactive oxygen species production in kidney significantly increased in fish challenged with A. salmonicida while the plasma alternative complement pathway activity was not affected. Increase of plasma lysozyme activity as well as reactive oxygen species production in spleen and kidney of sentinel fish suggest that these immune defenses can also be activated, but at lower bacteria concentration than infected fish. No differences in leucocyte populations, plasma lysozyme and alternative complement pathway activities were observed between dietary treatments. Similarly, expression of genes related to eicosanoid synthesis in liver were not affected by the dietary oil source but were strongly stimulated in fish challenged with A. salmonicida. These findings demonstrated that the use of linseed oil does not deplete the innate immune system of Eurasian perch juveniles.
AB - This study was designated to investigate the effects of dietary fish oil (FO diet) replacement by linseed oil (LO diet) on regulation of immune response and disease resistance in Eurasian perch (Perca fluviatilis). A control diet containing fish oil (FO = cod liver oil) and characterized by high levels of n-3 high LC-PUFA (6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet) composed of low LC-PUFA contents (1% EPA, 2.3% DHA of total FAs) but high C18 fatty acids levels. The experiment was conducted in quadruplicate groups of 80 fish each. After 10 weeks of feeding, the innate immune status was evaluated in various organs (liver, spleen, and head-kidney) (feeding condition). Two days later, a bacterial challenge was performed on fish from 2 rearing conditions: fish infected with Aeromonas salmonicida (bacteria condition) and fish injected with sterile medium but maintained in the same flow system that fish challenged with bacteria (sentinel condition). Three days after injection of bacteria, a significant decrease of lymphocyte, thrombocyte and basophil populations was observed while neutrophils were not affected. In addition, plasma lysozyme activity and reactive oxygen species production in kidney significantly increased in fish challenged with A. salmonicida while the plasma alternative complement pathway activity was not affected. Increase of plasma lysozyme activity as well as reactive oxygen species production in spleen and kidney of sentinel fish suggest that these immune defenses can also be activated, but at lower bacteria concentration than infected fish. No differences in leucocyte populations, plasma lysozyme and alternative complement pathway activities were observed between dietary treatments. Similarly, expression of genes related to eicosanoid synthesis in liver were not affected by the dietary oil source but were strongly stimulated in fish challenged with A. salmonicida. These findings demonstrated that the use of linseed oil does not deplete the innate immune system of Eurasian perch juveniles.
KW - Aeromonas salmonicida
KW - Alternative complement pathway
KW - Eicosanoid
KW - Eurasian perch
KW - Innate immune system
KW - LC-PUFA
KW - Linseed oil
KW - Lysozyme
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=84945571809&partnerID=8YFLogxK
U2 - 10.1016/j.fsi.2015.10.021
DO - 10.1016/j.fsi.2015.10.021
M3 - Article
AN - SCOPUS:84945571809
SN - 1050-4648
VL - 47
SP - 782
EP - 796
JO - Fish & Shellfish Immunology
JF - Fish & Shellfish Immunology
IS - 2
ER -