Coupled-cluster sum-frequency generation nonlinear susceptibilities of methyl (CH3) and methylene (CH2) groups

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment Image ID:c7cp03509h-t1.gif and of the polarizability Image ID:c7cp03509h-t2.gif with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange–correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH3 and CH2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH3 group and its neighboring CH2 units; and finally (v) going from the free chain to the free methyl model, and further to C3v constraints on Image ID:c7cp03509h-t3.gif leads to large variations of two ratios that are frequently used to probe the molecular orientation at the interface, the (r−a + r−b)/r+ ratio for both antisymmetric and symmetric CH3 vibrations and the Ippp/Issp ratio.
langue originaleAnglais
Pages (de - à)29822 - 29832
Nombre de pages11
journalPhysical Chemistry Chemical Physics
Volume19
Numéro de publication44
Les DOIs
étatPublié - 9 nov. 2017

Empreinte digitale

methylene
Derivatives
magnetic permeability
Dipole moment
Density functional theory
dipole moments
Molecular orientation
numerical differentiation
density functional theory
Vibrational spectra
vibration
Freezing
molecular properties
freezing
fragments
dipoles
probes
configurations
approximation

Citer ceci

@article{a8edadf42ecf4e2a95ec354a9d23884e,
title = "Coupled-cluster sum-frequency generation nonlinear susceptibilities of methyl (CH3) and methylene (CH2) groups",
abstract = "The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment Image ID:c7cp03509h-t1.gif and of the polarizability Image ID:c7cp03509h-t2.gif with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange–correlation functional can differ, with respect to CCSD, by as much as ±10 to 20{\%} and ±20 to 50{\%} for the CH3 and CH2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH3 group and its neighboring CH2 units; and finally (v) going from the free chain to the free methyl model, and further to C3v constraints on Image ID:c7cp03509h-t3.gif leads to large variations of two ratios that are frequently used to probe the molecular orientation at the interface, the (r−a + r−b)/r+ ratio for both antisymmetric and symmetric CH3 vibrations and the Ippp/Issp ratio.",
keywords = "Coupled-Cluster, nonlinear susceptibilities",
author = "{Tetsassi Feugmo}, {Conrard Giresse} and Vincent Li{\'e}geois and Beno{\^i}t Champagne",
year = "2017",
month = "11",
day = "9",
doi = "10.1039/C7CP03509H",
language = "English",
volume = "19",
pages = "29822 -- 29832",
journal = "Physical chemistry chemical physics : PCCP",
issn = "1463-9076",
publisher = "Royal Society of Chemistry",
number = "44",

}

TY - JOUR

T1 - Coupled-cluster sum-frequency generation nonlinear susceptibilities of methyl (CH3) and methylene (CH2) groups

AU - Tetsassi Feugmo, Conrard Giresse

AU - Liégeois, Vincent

AU - Champagne, Benoît

PY - 2017/11/9

Y1 - 2017/11/9

N2 - The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment Image ID:c7cp03509h-t1.gif and of the polarizability Image ID:c7cp03509h-t2.gif with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange–correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH3 and CH2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH3 group and its neighboring CH2 units; and finally (v) going from the free chain to the free methyl model, and further to C3v constraints on Image ID:c7cp03509h-t3.gif leads to large variations of two ratios that are frequently used to probe the molecular orientation at the interface, the (r−a + r−b)/r+ ratio for both antisymmetric and symmetric CH3 vibrations and the Ippp/Issp ratio.

AB - The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment Image ID:c7cp03509h-t1.gif and of the polarizability Image ID:c7cp03509h-t2.gif with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange–correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH3 and CH2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH3 group and its neighboring CH2 units; and finally (v) going from the free chain to the free methyl model, and further to C3v constraints on Image ID:c7cp03509h-t3.gif leads to large variations of two ratios that are frequently used to probe the molecular orientation at the interface, the (r−a + r−b)/r+ ratio for both antisymmetric and symmetric CH3 vibrations and the Ippp/Issp ratio.

KW - Coupled-Cluster

KW - nonlinear susceptibilities

UR - http://www.scopus.com/inward/record.url?scp=85034615492&partnerID=8YFLogxK

U2 - 10.1039/C7CP03509H

DO - 10.1039/C7CP03509H

M3 - Article

VL - 19

SP - 29822

EP - 29832

JO - Physical chemistry chemical physics : PCCP

JF - Physical chemistry chemical physics : PCCP

SN - 1463-9076

IS - 44

ER -