Converging to and escaping from the global equilibrium: Isostables and optimal control

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

Résumé

This paper studies the optimal control of trajectories converging to or escaping from a stable equilibrium. The control duration is assumed to be short. When the control is turned off, the trajectories have not reached the target and they subsequently evolve according to the free motion dynamics. In this context, we show that the problem can be formulated as a finite-horizon optimal control problem which relies on the notion of isostables. For linear and nonlinear systems, we solve this problem using Pontryagin's maximum principle and we study the relationship between the optimal solutions and the geometry of the isostables. Finally, optimal strategies for choosing the magnitude and duration of the control are considered.

langue originaleAnglais
titreProceedings of the 53rd IEEE Conference on Decision and Control
Pages5888-5893
Nombre de pages6
Volume2015-February
EditionFebruary
Les DOIs
Etat de la publicationPublié - 2014
Modification externeOui

Empreinte digitale

Examiner les sujets de recherche de « Converging to and escaping from the global equilibrium: Isostables and optimal control ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation