Projets par an
Résumé
Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence is also examined and proven to be improving with the rate of convergence of the underlying iterates. The theory is confirmed by some numerical experiments that also show the convergence of the Hessian approximations to be substantially slower for other known quasi-Newton formulae. © 1991 The Mathematical Programming Society, Inc.
langue originale | Anglais |
---|---|
Pages (de - à) | 177-195 |
Nombre de pages | 19 |
journal | Mathematical Programming Series B |
Volume | 50 |
Numéro de publication | 1-3 |
Les DOIs | |
Etat de la publication | Publié - 1 avr. 1991 |
Empreinte digitale
Examiner les sujets de recherche de « Convergence of quasi-Newton matrices generated by the symmetric rank one update ». Ensemble, ils forment une empreinte digitale unique.-
ADALGOPT: ADALGOPT - Algorithmes avancés en optimisation non-linéaire
1/01/87 → …
Projet: Axe de recherche
-
LANCELOT: LANCELOT, un logiciel pour l'optimisation non linéaire de grande taille
TOINT, P., Sartenaer, A., Gould, N. I. M. & Conn, A.
1/09/87 → 1/09/00
Projet: Recherche