Construction of Value at-Risk forecasts under different distributional assumptions within a BEKK framework

Nicolas Scholtes, Manuela Braione

Résultats de recherche: Papier de travailArticle de recherche

Résumé

Financial asset returns are known to be conditionally heteroskedastic and generally non-normally distributed, fat-tailed and often skewed. In order to account for both the skewness and the excess kurtosis in returns, we combine the BEKK model from the multivariate GARCH literature with different multivariate densities for the returns. The set of distributions we consider comprises the normal, Student, Multivariate Exponential Power and their skewed counterparts. Applying this framework to a sample of ten assets from the Dow Jones Industrial Average Index, we compare the performance of equally-weighted portfolios derived from the symmetric and skewed distributions in forecasting out-of-sample Value-at-Risk. The accuracy of the VaR forecasts is assessed by implementing standard statistical backtesting procedures. The results unanimously show that the inclusion of fat-tailed densities into the model specification yields more accurate VaR forecasts, while the further addition of skewness does not lead to significant improvements.
langue originaleAnglais
Nombre de pages37
Etat de la publicationEn préparation - 2014

Série de publications

NomCORE Discussion Paper Series
EditeurCenter for Operations Research and Econometrics

Empreinte digitale Examiner les sujets de recherche de « Construction of Value at-Risk forecasts under different distributional assumptions within a BEKK framework ». Ensemble, ils forment une empreinte digitale unique.

  • Contient cette citation